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Preface 

This is an introductory textbook on programming in general and functional 
programming in particulax. No knowledge of computers or experience in 
writing programs is assumed. The book is therefore suitable for teaching a 
course in programming to first-year undergraduates, but it can also be used 
as an introduction to functional programming for students who are already 
experienced programmers. 

In order to get the most out of the book, the student should know some 
mathematics, or at least possess a general appreciation of the principles of 
mathematical reasoning. Our primary aim in writing this book is to con
vey a view of programming as a mathematical activity, and mathematical 
reasoning lies at the heart of our subject. Functional programming involves 
notation and concepts of a kind which should be familiar to anyone with a 
little mathematical experience. For example, any student who has used the 
basic trigonometric functions to formulate problems in geometry, and has 
applied simple trigonometric laws and identities to derive solutions to these 
problems, will soon appreciate that a similar activity is being suggested for 
computational problems and their solution by functional programs. It fol
lows that the kind of mathematical understanding required is not very com
plicated or specialised, just the general ability to follow manipulations of 
formulae through applying algebraic laws, and the appreciation of why such 
manipulations can be useful in the task of solving practical problems. 

The order we have adopted for presenting material, as well as the par
ticular topics covered, has a number of novel aspects. First of all, there is 
the gradually increasing emphasis on the idea of synthesising, or deriving, 
programs from their specifications. It is surprising how often a program can 
be calculated by simple equational reasoning from a mathematical descrip
tion of what it is supposed to do. Many programs, particularly in the later 
part of the book, are derived from their specifications in this way. Others 
are left as exercises. Not all the programs in this book are constructed by 
calculation, for to do that would involve building detailed and special the
ories whose associated mathematics would take us beyond the scope of an 
introductory text. Such a task is a topic of active research and deserves a 
book of its own. Nevertheless, rather than deal with the subject of program 
synthesis, or derivation (or 'program transformation' as it is often called) in 

xi 
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a separate chapter, we have decided to introduce the essential ideas gradually 
throughout the text. 

Secondly, the subject of recursion is treated rather later on in the book 
(in Chapter 5) than an experienced reader might expect. However, there 
are two good reasons for introducing recursion later rather than earlier in a 
course on functional programming. First of all, we feel that the notion of 
a recursive function should be discussed at the same time as the notion of 
proof by mathematical induction. They are two sides of the same coin and 
one can best be understood only by referring to the other. Second, one can 
go a long way in solving problems by using a more-or-less fixed repertoire 
of functions, including a number of useful functions that operate on lists. 
By emphasising this collection of functions at the outset, we hope to foster a 
programming style which routinely deploys these functions as building blocks 
in the construction of larger ones . 

Thirdly, we say very little about how functional programming languages 
are implemented. The major reason for this decision is that there now exist 
a number of excellent textbooks devoted primarily to the problem of inter
preting and compiling functional languages. 1 Also, we feel that in the past 
too much emphasis has been given to this aspect of functional programming, 
and not enough to developing an appropriate style for constructing functional 
programs. 

The fourth and final aspect of our presentation, and certainly one of the 
most important, concerns the decision to use mathematical notation, sym
bols and founts, rather than the concrete syntax of a particular programming 
language. It is not our intention in this book to promulgate a particular lan
guage, but only a particular style of programming. However, one does, of 
course, have to present some consistent notational framework and the knowl
edgeable reader will quickly recognise the similarity of the one we have chosen 
to that suggested by David Turner, of the University of Kent, in a succession 
of functional languages. These languages are SASL, KRC and, more recently, 
Miranda.2 The last of these, Miranda, is very close to the kind of notation 
we are going to describe. The present book is not an introduction to Mi
randa, for we have found it convenient to differ in a few details (particularly 
in the names and precise definitions of the basic list processing functions), 
and many features of Miranda are not covered. Nevertheless, the book can 
be read with profit by someone who intends to use Miranda or, indeed, many 
other functional languages. 

We should also acknowledge our debt to a number of other languages 
which propose some similar concepts and notations. These are ML (developed 
by Robin Milner at Edinburgh), Hope (Rod Burstall, Dave Macqueen and 
Don Sannella at Edinburgh), and Orwell (Philip Wadler at Oxford). The 

lIncluding the recent Implementation of Functional Programming Languages by S.L. 
Peyton Jones, Prentice Hall, Hemel Hempstead, 1987. 

2Miranda is a trademark of Research Software Limited. 
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proliferation of languages for functional programming is a testament to the 
vitality of the subject. On the other hand, we do not wish to add to this 
Tower of Babel. Hence we have attempted to avoid specific language details 
as much as possible. 

Detailed organisation 

In the first three chapters, we study basic notations for numbers, truth-values, 
tuples, functions and lists. Chapter 1 deals with fundamental concepts, re
views the definition of a mathematical function, and introduces sufficient 
notation to enable simple functions to be constructed. At the same time, we 
briefly introduce the fundamental idea of a specification as a mathematical 
description of the task a program is to perform. In Chapter 2 we introduce 
notation for basic kinds of data, and also say more about functions. We also 
discuss how one can achieve precise control over the layout of printed values. 

Chapter 3 introduces lists, the most important data structure in func
tional programming. The names and informal meanings of a number of 
functions and operations on lists are presented, and some of the basic al
gebraic laws are described. Simple examples are given to help the student 
gain familiarity with these very useful tools for processing lists. 

Chapter 4 deals with more substantial examples of list processing and is 
organised rather differently from preceding chapters. Each example is accom
panied by exercises, projects, and various suggestions for possible improve
ments. An instructor can easily adapt these examples for use as classroom 
projects or student assignments. Some of the examples are not easy and 
require a fair amount of study. 

In Chapter 5, we finally meet formally the notion of a recursive function 
and see the precise definitions of the operations discussed in previous chap
ters. At the same time we introduce the notion of an inductive proof and 
show how the algebraic laws and identities described in Chapter 3 can be 
proved. If the reader prefers, this chapter can be studied immediately after 
Chapter 3, or even in conjunction with it. 

The emphasis in the first five chapters is on the expressive power of func
tional notation. The computer stays in the background a..lJ.d its role as a 
mechanism for evaluating expressions is touched upon only lightly. In Chap
ter 6 we turn to the subject of efficiency; for this we need to understand a 
little more about how a computer performs its task of evaluation. We dis
cuss simple models of evaluation, and relate function definitions to how they 
utilise time and space resources when executed by a computer. We also dis
cuss some general techniques of algorithm design which are useful in deriving 
efficient solutions to problems. 

In Chapter 7 we introduce the notion of an infinite list, and show how such 
lists can be used to provide alternative solutions to some old problems, as well 
as being a useful framework in which to study new ones. In particular, we 
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describe how infinite lists can be used in constructing programs that interact 
with the user. 

In Chapters 8 and 9 we turn to new kinds of data structure and show 
how they can be represented in our programming notation. In particular, 
Chapter 9 is devoted to the study of trees and their applications. One of 
the advantages of an expression-based notation for programming is that the 
study of data structures can be presented in a direct and simple manner, 
and one can go much further in describing and deriving algorithms that 
manipulate general data structures than would be possible in a conventional 
programming language. 

Advice to the instructor 

We have used the material in this text as a basis for courses in functional 
programming to first-year Mathematics and Computation undergraduates at 
Oxford, to graduate students on an M.Sc. course, and on various industrial 
courses. Drafts of the book have also been used to teach undergraduates and 
graduates in the USA and The Netherlands. The sixteen lecture course which 
is typical at Oxford means that only a selection of topics can be presented in 
the time available. We have followed the order of the chapters, but concen
trated on Chapters 2, 3, 4, 7 and part of Chapter 9 .  Chapter 5 on recursion 
and induction has usually been left to tutorial classes (another typical aspect 
of the Oxford system). The material in Chapter 5 is not really difficult and 
is probably better left to small classes or private study; too many induction 
proofs carried out at the blackboard have a distinctly soporific effect. On the 
other hand, Chapter 4, on examples, deserves a fair amount of attention. We 
have tried to choose applications that interest and stimulate the student and 
encourage them to try and find better solutions. Some of the examples have 
been set as practical projects with considerable success. 

We judge that the whole book could be taught in a two-term (or two
semester) course. It can also be adapted for a course on Algorithm Design 
(emphasising the material in Chapter 6) , and for a course on Data Structures 
(emphasising Chapter 9, in particular). 

It is of course important that formal teaching should be supported by 
laboratory and practical work. At Oxford we have used the language Orwell 
as a vehicle for practical computing work, but Miranda is a suitable alterna
tive. In fact, any higher-order functional language with non-strict semantics 
would do as well, particularly if based on an equational style of definition 
with patterns on the left-hand side of definitions. 
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Chapter 1 

Fundamental Concepts 

1.1 Functional programming 

Programming in a functional language consists of building definitions and 
using the computer to evaluate expressions. The primary role of the pro
grammer is to construct a function to solve a given problem. This function, 
which may involve a number of subsidiary functions, is expressed in notation 
that obeys normal mathematical principles. The primary role of the com
puter is to act as an evaluator or calculator: its job is to evaluate expressions 
and print the results. In this respect, the computer acts much like an ordi
nary pocket calculator. What distinguishes a functional calculator from the 
humbler variety is the programmer's ability to make definitions to increase its 
powers of calculation. Expressions which contain occurrences of the names 
of functions defined by the programmer are evaluated by using the given def
initions as simplification (or 'reduction') rules for converting expressions to 
printable form. 

A characteristic feature of functional programming is that if an expression 
possesses a well-defined value, then the order in which a c.omputer may carry 
out the evaluation does not affect the outcome. In other words, the meaning 
of an expression is its value and the task of the computer is simply to obtain 
it. It follows that expressions in a functional language can be constructed, 
manipulated and reasoned about, like any other kind of mathematical ex
pression, using more or less familiar algebraic laws. The result, as we hope 
to justify, is a conceptual framework for programming which is at once very 
simple, very concise, very flexible and very powerful. 

1.1.1 Sessions and scripts 

To illustrate the idea of using a computer as a calculator, imagine we are sit
ting at a terminal and the computer has indicated its willingness to evaluate 
an expression by displaying a prompt sign: 

1 
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? 

at the beginning of a blank line. We can then type an expression, followed 
by a newline character, and the computer will respond by printing the result 
of evaluating the expression, followed by a new prompt ? on a new line, 
indicating that the process can begin again with another expression. 

One kind of expression we might type is a number: 

? 42 
42 

Here, the computer's response is simply to redisplay the number we typed. 
The decimal numeral 42 is an expression in its simplest possible form and no 
further process of evaluation can be applied to it. 

We might type a slightly more interesting kind of expression: 

? 6 X 7 
42 

Here, the computer can simplify the expression by performing the multi
plication. In this book, we shall adopt common mathematical notations for 
writing expressions. In particular, the multiplication operator will be denoted 
by the sign x .  It may or may not be the case that a particular keyboard 
contains this sign, but we shall not concern ourselves in the text with how to 
represent mathematical symbols in a restricted character set. 

We will not elaborate here on the possible forms of numerical and other 
kinds of expression that can be submitted for evaluation. They will be dealt 
with thoroughly in the following chapters. The important point to absorb for 
the moment is that one can just type expressions and have them evaluated. 
This sequence of interactions between user and computer is called a 'session'. 

Now let us illustrate the second, and intellectually more challenging, as
pect of functional programming: building definitions. A list of definitions 
will be called a 'script'. Here is a simple example of a script: 

square x 
minx y 

x X x 
= x, if x ::; y 

y, if x> y 

In this script, two functions, named square and min, have been defined. 
The function square takes a value x as argument and returns the value of 
x multiplied by itself as its result. The function min takes two numbers, x 
and y, as arguments and returns the smaller value. For the present we will 
not discuss the exact syntax used for making definitions. Notice, however, 
that definitions are written as equations between certain kinds of expression; 
these expressions can contain variables, here denoted by the symbols x and 
y. 

Having created a script, we can submit it to the computer and enter a 
session. For example, the following session is now possible: 
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? square (3 + 4) 
49 

? min 3 4 
3 

? square (min 3 4) 
9 

3 

In effect, the purpose of a definition is to introduce a binding associating 
a given name with a given value. In the above script, the name square is 
associated with the function which squares its argument, and the name min 
is associated with the function which returns the smaller of its two arguments. 
A set of bindings is called an environment or context. Expressions are always 
evaluated within some context and can contain occurrences of the names 
found in that context. The evaluator will use the definitions associated with 
these names as rules for simplifying expressions. 

Some expressions can be evaluated without the programmer having to 
provide a context. A number of operations may be given as primitive in that 
the rules of simplification are built into the evaluator. For example, we shall 
suppose the basic operations of arithmetic are provided as primitive. Other 
commonly useful operations may be provided in special libraries. of predefined 
functions. 

At any stage a programmer can return to the script in order to add or 
modify definitions. The new script can then be resubmitted to the computer 
to provide a new context and another session started. 

For example, suppose we return to the script and add the definitions: 

side = 12 
area = square side 

These equations introduce two numerical constants, side and area. Notice 
that the definition of area depends on the previously defined function square. 
Having resubmitted the script, we can enter a session and type, for example: 

? area 
144 

? min (area + 4) 150 
148 

To summarise the important points made so far: 

1. Scripts are collections of definitions supplied by the programmer. 

2. Definitions are expressed as equations between certain kinds of expres
sion and describe mathematical functions. 

3. During a session, expressions are submitted for evaluation; these ex
pressions can contain references to the functions defined in the script. 
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Exercises 

1 . 1 .1 Using the function square, design a function quad which raises its ar
gument to the fourth power. 

1 . 1 .2 Define a function max which returns the greater of its two arguments. 

1 . 1 .3 Define a function for computing the area of a circle with given radius 
r (use 22/7 as an approximation to 71") . 

1.2 Expressions and values 

As we have seen, the notion of an expression is central in functional program
ming. There are many kinds of mathematical expression, not all of which are 
permitted in the notation we shall describe, but all possess certain charac
teristics in common. The most important feature of mathematical notation 
is that an expression is used solely to describe (or denote) a value. In other 
words, the meaning of an expression is its value and there are no other effects, 
hidden or otherwise, in any procedure for actually obtaining it. Furthermore, 
the value of an expression depends only on the the values of its constituent 
expressions (if any) and these subexpressions may be replaced freely by oth
ers possessing the same value. An expression may contain certain 'names' 
which stand for unknown quantities, but it is normal in mathematical nota
tion to presume that different occurrences of the same name refer to the same 
unknown quantity (within obvious syntactic limits) . Such names are usually 
called 'variables', but every mathematician understands that variables do 
not vary: they always denote the same quantity, provided we remain within 
the same context of the definitions associated with them. The characteris
tic property of mathematical expressions described here is called referential 
transparency. 

Among the kinds of value an expression may denote are included: num
bers, truth-values, characters, tuples, functions, and lists. All of these will 
be described in due course. As we shall see later on in the book, it is also 
possible to introduce new kinds of value and define operations for generating 
and manipulating them. 

1.2.1 Redu.ction 

The computer evaluates an expression by reducing it to its 'simplest equiva
lent form' and printing the result. The terms evaluation, simplification, and 
reduction will be used interchangeably to describe this process. We can give 
a brief flavour of the essence of reduction by considering the evaluation of 
the expression square (3 + 4). Suppose we let the sign =} mean 'reduces to'. 
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One possible reduction sequence is as follows: 

square (3 + 4) => square 7 
=> 7 x 7  
=> 49 

(+)  
(square) 
( x )  

5 

In this sequence, the label ( + ) refers to a use of the built-in rule for addition, 
( x )  refers to a similar rule for multiplication, and (square) refers to a use of 
the rule: 

square x => x X x 

which is associated with the definition of square supplied by the programmer. 
The expression 49 cannot be further reduced, so that is the result printed by 
the computer. 

The above sequence of reduction steps is not the only way to simplify the 
expression square (3 + 4) .  Indeed, another sequence is as follows: 

square (3 + 4) => (3 + 4) x (3 + 4) 
=> 7 X (3 + 4) 
=> 7x7 
=> 49 

(square) 
(+ ) 
(+)  
(x)  

In  this reduction sequence the rule for square is applied first, but the final 
result is the same. A fuller account of reduction, including a discussion of 
different reduction strategies, will be given in Chapter 6. The point to grasp 
here is that expressions can be evaluated by a basically simple process of 
substitution and simplification, using both primitive rules and rules supplied 
by the programmer in the form of definitions. 

It is important to be clear about the distinction between values and their 
representations by expressions. The simplest equivalent form of an expres
sion, whatever that may be, is not a value but a representation of it. Some
where, in outer space perhaps, one can imagine a universe of abstract values, 
but on earth they can only be recognised and manipulated by their rep
resentations. There are many representations for one and the same value. 
For example, the abstract number forty-nine can be represented by the dec
imal numeral 49, the roman numeral XLIX, the expression 7 X 7, as well as 
infinitely many others. Computers usually operate with the binary repre
sentation of numbers in which forty-nine may be represented by the pattern 
0000000000110001 of 16 bits. 

We shall say an expression is canonical (or in normal form) if it cannot 
be further reduced. A value is printed as its canonical representation. Notice 
that the notion of a canonical expression is dependent both on the syntax 
given for forming expressions and the precise definition of the permissible re
duction rules. Some values have no canonical representations, others have no 
finite ones. For example, the number 71" has no finite decimal representation. 
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It is possible to get a computer to print out the decimal expansion of 7r digit 
by digit, but the process will never terminate. 

Some expressions cannot be reduced at all. In other words, they do not 
denote well-defined values in the normal mathematical sense. For instance, 
supposing the operator / denotes numerical division, the expression 1/0 does 
not denote a well-defined number. A request to evaluate 1/0 may cause the 
evaluator to respond with an error message, such as 'attempt to divide by 
zero', or go into an infinitely long sequence of calculations without producing 
any result. In order that we can say that, without exception, every (well
formed) expression denotes a value, it is convenient to introduce a special 
symbol ..1, pronounced 'bottom', to stand for the undefined value. In partic
ular, the value of 1/0 is ..1 and we can assert 1/0 = ..L. The computer is not 
expected to be able to produce the value ..L. Confronted with an expression 
whose value is ..1, the computer may give an error message, or it may remain 
perpetually silent. Thus, ..1 is a special kind of value, rather like the special 
value 00 in mathematical calculus. Like special values in other branches of 
mathematics, ..1 can be admitted to the universe of values only if we state 
precisely the properties it is required to have and its relationship with other 
values. We shall not go into the properties of ..1 for a while, but for now 
merely note the reasons for its existence and its special status. 

Exercises 

1,2.1 Count the number of different ways that: 

square ( square (3 + 7)) 

can be reduced to normal form. 

1.2.2 Consider the definition: 

three x = 3 

In how many ways can three (3 + 4) be reduced to normal form? 

1.2.3 Imagine a language of expressions for representing integers defined by 
the syntax rules: (i) zero is an expression; (ii) if e is an expression, then so 
are ( succ e) and (pred e). An evaluator reduces expressions in this language 
by applying the following rules repeatedly until no longer possible: 

( succ (pred e)) => e 
(pred ( succ e) ) => e 

Simplify the expression 

( succ.l ) 
(pred.1) 

( succ (pred ( succ (pred (pred zero))))) 
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In how many ways can the reduction rules be applied to this expression? Do 
they all lead to the same final result? Prove that the process of reduction 
must terminate for all given expressions. ( Hint: Define an appropriate notion 
of expression size, and show that reduction does indeed reduce size.) 
Suppose an extra syntactic rule is added to the language: (iii) if el and ez 
are expressions, then so is ( add el e2). The corresponding reduction rules are: 

( add zero ez) '* ez 
( add ( succ el ) e2) '* ( succ ( add el ez)) 
( add (pred el) ez) '* (pred ( add el e2)) 

Simplify the expression: 

( add ( succ (pred zero)) zero). 

( add.l) 
( add.2) 
( add.3) 

Count the number of different ways the reduction rules can be applied to 
the above expression. Do they always lead to the same final result? Prove 
that the the process of reduction must always terminate for any given initial 
expression. ( Hint: Extend the notion of expression size. ) 

1.2.4 Imagine a language of finite sequences of 0 and 1. The rules for sim
plifying strings in this language are given by: 

l??x '* x1101 
O??x '* xOO 

In these rules, the variable x denotes an arbitrary sequence of Os and Is and 
the sign '?' denotes a single 0 or 1. Reduce the following expressions to 
canonical form: 

1110 10 1110100 

Construct an expression for which the reduction process does not terminate. 
(Such a system of reduction rules is known as a Post Normal System; see 
Minsky [1] for further details. Although it is easy to construct strings that 
'loop', it is an open problem whether or not there is an initial string on 
which the above system fails to terminate by producing an infinite number 
of successively larger strings.) 

1.3 Types 

In the notation we are going to describe, the universe of values is partitioned 
into organised collections, called types. Types can be divided into two kinds. 
Firstly, there are basic types whose values are given as primitive. For ex
ample, numbers constitute a basic type (the type num), as do truth-values 
(the type bool) and characters (the type char). Secondly, there are com
pound (or derived) types, whose values are constructed from those of other 
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types. Examples of derived types include: (num, char) , the type of pairs of 
values, the first component of which is a number and the second a character; 
(num -+ num), the type of functions from numbers to numbers; and [char) , 
the type of lists of characters. Each type has associated with it certain op
erations which are not meaningful for other types. For instance, one cannot 
sensibly add a number to a character or multiply two functions together. 

It is an important principle of the notation we are going to describe that 
every well-formed expression can be assigned a type that can be deduced from 
the constituents of the expression alone. In other words, just as the value 
of an expression depends only on the values of its component expressions, so 
does its type. This principle is called strong-typing. 

The major consequence of the discipline imposed by strong-typing is that 
any expression which cannot be assigned a 'sensible' type is regarded as not 
being well-formed and is rejected by the computer before evaluation. Such 
expressions have no value: they are simply regarded as illegal. 

Here is an example of a script which contains a definition that cannot be 
assigned a sensible type: 

ayx 'A' 
bee x x + ay x 

The expression 'A' in this script denotes the character A. For any x, the 
value of ay x is 'A' and so has type char . Since + is reserved to denote the 
operation of numerical addition, the right-hand side of the definition of bee 
is not well-typed: one cannot add characters numerically. It follows that the 
function bee does not possess a sensible type, and the script is rejected by 
the computer. (On the other hand, the function ay does possess a sensible 
type; we shall see what it is in the next section.) 

There are two stages of analysis when an expression is submitted for 
evaluation. The expression is first checked to see whether it conforms to 
the correct syntax laid down for expressions. If it does not, the computer 
signals a syntax error. This stage is called syntax-analysis. If it does, then 
the expression is analysed to see if it possesses a sensible type. This stage is 
called type-analysis. If the expression fails to pass this stage, the computer 
signals a type error. Only if the expression passes both stages can the process 
of evaluation begin. Similar remarks apply to definitions before a script is 
accepted. 

Strong typing is important because adherence to the discipline can help 
in the design of clear and well-structured programs. What is more, a wide 
range of logical errors can be trapped by any computer which enforces it. 

1.4 Functions and definitions 

The most important kind of value in functional programming is a function 
value. Mathematically speaking, a function f is a rule of correspondence 
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which associates with each element of a given type A a unique member of a 
second type B .  The type A is called the source type, and B the target type 
of the function. We will express this information by writing: 

f :: A --> B 

This formula asserts that the type of f is A --> B .  In other words, the type
expression A --> B denotes a type whenever A and B do, and describes the 
type of functions from A to B. 

A function f :: A --> B is said to take arguments in A and return results in 
B .  If x denotes an element of A, then we write f( x ), or just f x, to denote the 
result of applying the function f to x. This value is the unique element of B 
associated with x by the rule of correspondence for f. The former notation, 
f( x), is the one normally employed in mathematics to denote functional 
application, but the brackets are not really necessary and we shall use the 
second form, f x, instead. However, when formal expressions are mixed in 
with running prose we shall often surround them with brackets to aid the 
eye. For example, we write (J x) rather than f x. 

We shall be careful never to confuse a function with its application to 
an argument. In some mathematics texts one often finds the phrase 'the 
function f( x) ', when what is really meant is 'the function f' . In such texts, 
functions are rarely considered as values which may themselves be used as 
arguments to other functions and the usage causes no confusion. In functional 
programming, however, functions are values with exactly the same status as 
all other values; in particular, they can be passed as arguments to functions 
and returned as results. Accordingly, we cannot afford to be casual about the 
difference between a function and the result of applying it to an argument. 

It is important to keep in mind the distinction between a function value 
and a particular definition of it. There are many possible definitions for 
one and the same function. For instance, we can define the function which 
doubles its argument in the following two ways: 

double x = x + x 
double' x = 2 X x 

The two definitions describe different procedures for obtaining the correspon
dence, but double and double' denote the same function and we can assert 
double = double' as a mathematical truth. Regarded as procedures for evalu
ation, one definition may be more or less 'efficient' than the other, in the sense 
that the evaluator may be able to reduce expressions of the form (double x ) 
more or less quickly than expressions of the form (double' x ) . However, the 
notion of efficiency is not one which can be attached to function values them
selves. Indeed, it depends on the given form of the definition and the precise 
characteristics of the mechanism that evaluates it. 
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1.4.1 Type information 

When defining functions in a script, it is allowable to include type information 
about the function. For example, we can define the function square in a script 
by writing: 

square num -+ num 
square x = x X x 

Although it is often good practice to include them, function definitions do 
not have to be accompanied by type declarations. The type of the function 
can be inferred from its defining equation alone. This is an instance of the 
strong-typing discipline mentioned in the previous section. The operator X is 
reserved exclusively for the multiplication of numeric quantities, so the type 
assignment square :: num -+ num can be deduced mechanically. 

Some functions have very general source and target types. Consider the 
following definition: 

id x = x 

This equation defines the identity function: it maps every member of the 
source type to itself. Its type is therefore A -+ A for some suitable type A. 
But every type A is suitable, since no particular property of the elements 
of A is required in the definition of id . The problem of giving a sensible 
type to id is solved by introducing type variables. The type assigned to id is 
o -+ o. Here 0 denotes a type variable. We shall use greek letters 0, (3, I, . . . , 
and so on, to denote type variables. Like other kinds of variable, a type 
variable can be instantiated to different types in different circumstances. For 
instance, the expression (id 3) is well-formed and has type num because 
num can be substituted for 0 in the type of id, yielding a (num -+ num ) 
version. Similarly, the expression (id square) is well-formed and has type 
(num -+ num) because (num -+ num) (the type of the function square) 
can be substituted for o. Finally, the expression (id id) is also well-formed 
because the type (0 -+ 0) can itself be substituted for o. The type of (id id) 
is therefore (0 -+ 0) . And, of course, we have id id = id. 

Here is another example of a valid definition whose associated type con
tains variables. Recall the definition of the function ay from the previous 
section: 

ayx = 'A' 

The type associated with ay is ay :: 0 -+ char . The source type of ay can 
be any type at all. 

We now have the beginnings of a language of expressions that denote 
types. This language contains constant expressions, such as num or char , 
variables, such as 0 and (3, and operators, such as -+ .  If such an expression 
does contain variables, then we say that it denotes a polymorphic type. In 
particular, the functions id and ay have polymorphic types. 
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1.4.2 Forms o f  definition 

In many situations we may want to define the value of a function by case 
analysis. Consider again the function min from Section 1.1: 

min x y = x ,  if x :s: y 
= y ,  if x >  y 

This definition consists of two expressions, each of which is distinguished by 
boolean-valued expressions, called guards. A boolean-valued expression is an 
expression which evaluates to one of the truth-values True or False. The first 
alternative of the definition says that the value of (min x y) is defined to be 
x, provided the expression x :s: y evaluates to True. The second alternative 
says that (min x y) is defined to be y provided the expression x > y evaluates 
to True. The two cases, x :s: y and x > y, exhaust all possibilities, so the 
value of min is defined for all numbers x and y. It does not matter in which 
order we write the alternatives because the two cases are disjoint. 

Another way to define min is to write: 

min x y = x ,  if x :s: y 
= y ,  otherwise 

The special word 'otherwise' can be thought of as a convenient abbreviation 
for the condition which returns the value True when all previous guards 
return the value False. 

The final piece of notation we shall introduce here is called a local defi
nition. In mathematical descriptions one often finds an expression qualified 
by a phrase of the form 'where ... '. For instance, one might find 'f( x, y) = 
(a + 1)(a + 2) ,  where a = (x + y)/2' . The same device can be used in a formal 
definition: 

f (x , y)  = ( a + 1) x ( a + 2) 
where a = (x + y)/2 

Here, the special word 'where' is used to introduce a local definition whose 
context (or scope) is the expression on the right-hand side of the definition 
of f .  Notice that the whole of the where-clause is indented to show it is part 
of this expression. 

A local definition can be used in conjunction with a definition by case 
analysis. Consider the following: 

f x y = x + a ,  if x > 10 
= x - a ,  otherwise 

where a = square (y + 1) 

In this definition, the where-clause qualifies both parts of the right-hand side. 
Although, for readability, there are two occurrences of the = sign in the case 
analysis for f, there is only one equation and the scope of the where-clause 
includes all of it. 
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1.4.3 Currying 

Consider again the definition of min: 

min x y = x ,  if x � y 
= y, if x >  y 

Notice that the arguments to min are written without brackets and an inter
vening comma. We can, if we like, add brackets and write: 

min' (x , y) = x , if x � y 
= y, otherwise 

The two functions, min and min' , are very closely related, but there is a 
subtle difference: they have different types. The function min' takes a single 
argument which is a structured value consisting of a pair of numbers; its type 
is given by: 

min' : :  (num, num) -+ num 

The function min, on the other hand, takes two arguments one at a time. Its 
type is given by: 

min : :  num -+ (num -+ num) 

In other words, min is a function which takes a number and returns a function 
(from numbers to numbers). For each value of x the expression (min x) 
denotes a function which takes an argument y and returns the minimum of 
x and y. 

Here is another example. The function add, defined by: 

add x y = x + y 

also has type num -+ (num -+ num) . For each x ,  the function ( add x) 'adds 
x to things'. In particular, (add 1 )  is the successor function which increments 
its argument by 1 ,  and (add 0) is the identity function on numbers. 

This simple device for replacing structured arguments by a sequence of 
simple ones is known as 'currying', after the American logician H. B. Curry. 
One advantage of currying is that it reduces the number of brackets which 
have to be written in expressions (an aspect of the notation the reader will 
quickly grow to appreciate). For currying to work properly in a consistent 
manner, we require that the operation of functional application associates to 
the left. That is, min x y means (min x)  y and not min (x y) .  As an operator, 
functional application has a very 'quiet' notation, being represented by just 
a space. In formal expressions this quietness improves readability, and with 
currying we can exploit quietness to the full. 

We have now said enough about functions, types and definitions to enable 
simple scripts to be written. Further material on functions will be found at 
the end of the next chapter. 
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Exercises 

1 .4.1  Describe one appropriate type for the definite integral function of 
mathematical analysis, as used in the phrase 'the integral of f from a to 
b' .  

1 .4.2 Give examples of functions with the following types: 

(num --+ num) --+ num 
num --+ (num --+ num) 

(num --+ num) --+ (num --+ num) 

1 .4.3 Give a definition of a function sign : :  num --+ num which returns 1 if 
its argument is positive, - 1  if its argument is negative, and 0 otherwise. 

1 .4.4 Suggest possible types for the following functions: 

one x 
apply f x 
compose f g x 

= 1 
= f x  
= f (g x )  

1.5 Specifications and implementations 

In computer programming, a specification is a mathematical description of 
the task a program is to perform, while an implementation is a program that 
satisfies the specification. Specifications and implementations are quite dif
ferent in nature and serve different purposes. Specifications are expressions of 
the programmer's intent (or client's expectations) and their purpose is to be 
as brief and clear as possible; implementations are expressions for execution 
by computer and their purpose is to be efficient enough to execute within 
the time and space available. The link between the two is the requirement 
that the implementation satisfies, or meets, the specification, and the serious 
programmer is obliged to provide a proof that this is indeed the case. 

A specification for a function value is some statement of the intended 
relationship between argument values and results. A simple example is given 
by the following specification of a function increase : :  num --+ num: 

increase x > square x 

for all x 2: O .  This just says that the result of increase should be greater 
than the square of its argument, whenever the argument is greater than or 
equal to zero. 

Here is one possible implementation of increase :  

increase x = square (x + 1 )  
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This is a valid definition in our programming notation. The proof that this 
definition of increase satisfies the specification is as follows : assuming x � 0 ,  
we have: 

increase x square (x + 1 ) ( increase) 
= (x + 1 ) X (x + 1) ( square) 

x x x + 2 x x + 1  (algebra) 
> x X x (assumption: x � 0) 
= square x ( square) 

Here we have invented a definition of increase first , and afterwards verified 
that it meets the specification. Clearly, there are many other functions which 
will satisfy the specification and, since this is the only requirement , all are 
equally good.  

One way of specifying a function is to state the rule of correspondence 
explicitly. The functional notation we shall describe can be very expressive, 
and it is often possible to write down a formal definition within the notation 
which will actually serve as the specification. This specification can then 
be executed directly. However, it may prove so grossly inefficient that the 
possibility of execution will be of theoretical interest only. Having written 
an executable specification, the programmer is not necessarily relieved of 
the burden (or pleasure) of producing an equivalent but acceptably efficient 
alternative. 

The problem of showing that formal definitions meet their specifications 
can be tackled in a number of ways . One approach, illustrated above, is to 
design the definition first and afterwards verify that the necessary conditions 
are satisfied. Another approach, which can lead to clearer and simpler pro
grams, is to systematically develop (or synthesise) the definition from the 
specification. For example, if we look at the specification of increase we may 
argue that since x + 1 > x for all x ,  we have: 

square x + 1 > square x 

and so we can define: 

increase x = square x + 1 

In fact , the new definition of increase satisfies a stronger specification than 
required, since increase x > square x for all possible values of x ,  including 
negative ones . This does not invalidate the definition because any implemen
tation that gives more than is required is at least as good as one that does 
not . We shall see other, more convincing, examples of systematic program 
development as we progress .  

This paradigm of software development - first write a clear specification, 
then develop an acceptably efficient implementation - is the focus of active 
research in computation and should not }- � taken as a cut-and-dried method,  
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applicable in all circumstances . Two potential sources of difficulty are that 
the formal specification may not match our informal intentions , and the proof 
that the implementation matches the specification may be so large or com
plicated that it cannot be guaranteed to be free of error. Nevertheless , by 
trying to follow the approach whenever we can, the reliability of programs 
can be greatly increased. 

Exercises 

1. 5 . 1  Using any suitable notation, write down a specification of a function 
isSquare that determines whether or not its argument is an integer which is 
the square of another integer . Suppose the value of ( intsqrt x ) is the largest 
integer which is no greater than ..;x. Will the following definition meet your 
specification? 

isSquare x = (square ( intsqrt x ) = x ) 

1. 5 .2 Write down a precise specification of the function intsqrt mentioned 
in the previous question. 



Chapter 2 

Basic Data Types 

This chapter introduces the basic types of value out of which expressions 
are constructed. They include numbers , booleans, characters and tuples. We 
shall describe how the values of each type are represented and give some of the 
primitive operations for manipulating them. Along the way we shall discuss 
furth er features of our notation for functional programming, including: (i) 
the relationship between functions and operators ; (ii) how to exercise precise 
control over the layout of results ;  and (iii) how to abbreviate the names of 
types . 

2 . 1  Numbers 

The data type num consists of whole numbers (or integers) and fractional 
numbers (also called floating-point numbers) . A whole number is a number 
whose fractional part is zero. Numeric constants are represented in decimal 
notation, as the following examples show: 

42 - 42 o 13.632 - 0.6 6.0 

Although there are infinitely many numbers , computers have finite ca
pacities and can only store a limited range. Even within a finite range there 
are infinitely many fractional numbers , so not all numbers can be stored ex
actly. It is wise to be aware that a limitation exists ,  especially since it can 
cause what appears to be a mathematically correct program to fail or return 
unexpected results .  However, precise details of number representation and 
accuracy will vary from implementation to implementation and we shall not 
go into details . 

We will use the operations of Table 2 . 1  for processing elements of num. 
Each of these is used as a binary infix operator; for example, we write x + y. 
The minus sign ( - ) can also be used as a unary prefix operator, that is ,  we 
write - x to denote the negation of x .  

1 6  
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+ addition 
subtraction 

X multiplication 
/ division 

exponentiation 
div integer division (see later) 
mod integer remainder (see later) 

Table 2 . 1  Arithmetic operations 

As the representation of an arbitrary number may not be exact , opera
tions on fractional numbers may not produce the same answers as in ordinary 
arithmetic . For example, the values of (x X y)/y and x may not be equal. 
However, when the arguments and results of operations are whole numbers , 
and are within the range of permissible values prescribed by a particular im
plementation, then the arithmetic will be exact . In other words , all the basic 
operations except division / return exact integer results on integer arguments ,  
provided the integers are  in  the permitted range. 

Here are some simple examples of numerical expressions: 

? 3 - 7 - 2  
-6 

? 3 X 7 + 4 .1  
25. 1 

? 3 x (7 + 4.1 )  
33 .3  

? square 3 X 4 
36 

? 3 � 4  X 2 
162 

It is clear from these examples that more than one operator may appear 
in an expression and that different operators have different binding powers . 
Moreover , when the same operator occurs twice in succession, as in the case 
(3 - 7 - 2) ,  a certain order of association is assumed. We deal with these 
matters, precedence and order of association, separately. 

2.1.1 Precedence 

When several operators appear together in an expression, certain rules of 
precedence are provided to resolve possible ambiguity. The precedence rules 
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for the common arithmetic operators are absorbed in childhood without ever 
being stated formally. Their sole purpose in life is to allow one to reduce 
the number of brackets in an expression. The relative binding powers of the 
binary arithmetic operators can be summarised as follows (operators with a 
higher precedence appear above those with a lower precedence) : 

exponentiation 
x / div mod 
+ -

the 'multiplying' �perators 
the 'addition' operators 

In addition, as functional application binds more tightly than any other 
operator, it goes above exponentiation in this list. 

To illustrate these rules: 

3 � 4  X 5 means 
3 X 7 + 4.1 means 
square 3 X 4 means 

(3 � 4) x 5  
(3 X 7) + 4.1  
( square 3) X 4 

Of course, just as in normal mathematical notation, one can always use 
(round) brackets to force a different order of grouping. In particular, brackets 
will always be used to remove possible ambiguity from expressions involving 
unary minus, so unary minus is not assigned a precedence in the notation 
used in this book. For example, we shall write either (- x ) � y or -( x � y) ,  
but never just - x  � y .  

2.1.2 Order o f  association 

The second device for reducing brackets is to provide an order of association 
for operators of equal binding power. Operators can associate either to the 
left or to the right. We have already encountered one example of declaring 
such a preference: functional application - the operator denoted by just a 
space - associates to the left in expressions. In arithmetic, operators on 
the same level of precedence are usually declared to associate to the left as 
well. Thus 5 - 4 - 2 means (5 - 4) - 2 and not 5 - (4 - 2) .  However, 
exponentiation associates to the right, so 3 � 4 � 5 means 3 � (4 � 5) and not 
(3 � 4) � 5 .  Another example of an operator which associates to the right is 
the function type operator --+ :  thus, a --+ (3 --+ 'Y means a --+ ((3 --+ 'Y) and 
not (a --+ (3) --+ 'Y. Of course, it is not necessary to insist that an order of 
association be prescribed for every operator. If no preference is indicated, 
then brackets must be used to avoid ambiguity. 

A declaration of a specific order of association should not be confused with 
a different, though related, property of operators known as associativity. An 
operator EEl is said to be associative if: 

(x EEl y) EEl z = x EEl (y EEl z) 
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for all values x ,  y and z of the appropriate type. For example, + and X are 
associative operators,  but � is not . For an associative operator , the choice of 
the order of association has no effect on meaning. 

2 .1.3 div and mod 

The operators div and mod perform integer division and remainder respec
tively. If x is an arbitrary integer and y is a positive integer, then (x div y) 
and ( x  mod y)  are defined to be the unique integers q and r satisfying the 
condition: 

x = q X Y + r and 0 ::::; r < y 

In this book, we shall only use div and mod under the stated conditions on 
x and y . Here are some simple examples : 

? 7 div 3 
2 

? (-7) div 3 
-3 

? 7 mod 3 
1 

? (-7) mod 3 
2 

2 .1.4 Operators and sect ions 

So far we have not said what the types of the arithmetic operators are. 
Unary negation has type num --+ num, while the binary operators all have 
type num --+ num --+ num. Thus we can write: 

(+)  : : num --+ num --+ num 
( x )  : : num --+ num --+ num 

and so on. Notice that the operators in the above type declarations are 
enclosed in brackets. A bracketed operator is called a section. Enclosing an 
operator in brackets converts it to an ordinary prefix function which can be 
applied to its arguments like any other function. For example , we have: 

(+) x y  = x + y  
( x ) x y  = x x y  

These equations explain why the type assigned to each binary operator is 
that of a curried function which takes its arguments one at a time. Like any 
other name, a bracketed operator can be used in expressions and passed as 
an argument to a function. To give a brief illustration, if we define: 

both ! x = ! x x 
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then we have: 
both ( + ) 3 = ( + ) 3 3 = 3 + 3 = 6 

Note also that : 
double = both ( + ) 

where double is the function that doubles a number. 
The notational device of enclosing a binary operator in brackets to convert 

it into a normal prefix function can be extended: an argument can also be 
enclosed along with the operator . If EB denotes an arbitrary binary operator 
(not necessarily a numerical one) , then (EBx )  and (xEB) are functions with the 
definitions: 

(xEB) Y = x EB y 
(EBx) y = y EB x 

These forms are also called sections . For example , we have: 

( X 2) is the 'doubling' function, 
( 1f) is the 'reciprocal' function , 
(/2) is the 'halving' function, 
(+1) i s  the 'successor' function. 

There is one exception to the rule for forming sections: (-x )  is interpreted 
as the unary operation of negation applied to x .  If we want a function which 
subtracts x from things , then we have to define it explicitly: 

subtmct x y = y - x 

Having defined subtmct as a curried function , we can apply it to only one 
argument and obtain the function ( subtmct x )  which subtracts x from its 
argument . 

2.1.5 Example : computing square roots 

Let us now illustrate some of the basic arithmetic operations by constructing 
a definition of the function sqrt for computing the square root of a number. 
The mathematical specification of sqrt is that : 

sqrt x 2: 0 and (sqrt x )  � 2 = x 

whenever x 2: o .  In other words , ( sqrt x )  must be defined for non-negative 
x ,  and its value is the non-negative square root of x .  

There are two points worth noting about this specification. First of all, 
it does not provide, or even suggest , a method for computing square roots . 
Second, it is rather strong in that it does not make allowances for the lim
ited precision of arithmetic operations on actual computers . For example, it 
requires that :  

sqrt 2 = 1 .4142135623 . . .  
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be computed exactly. As  we shall see in  a later chapter, i t  is quite possible to  
design a function which returns an infinite list of digits ,  though the process 
of printing this list will never terminate. The programmer can then show 
that sqrt meets its specification by proving that the list of digits , if contin
ued for long enough, will approximate the answer to any required degree of 
accuracy. However, for the purposes of the present example we shall weaken 
the specification to require only that : 

sqrt x � 0 and abs « sqrt x ) � 2 - x ) < eps 

for a suitably small number eps > 0, chosen to take account of the limited 
precision of the basic arithmetic operations. Here, abs is the function: 

abs x = - x ,  if x < 0 
= x ,  otherwise 

which returns the absolute value of a number. 
To illustrate the revised specification, suppose we take eps = 0 .0001 and 

x = 2 .  We require: 

and since: 

the value: 

abs ( (  sqrt 2) � 2 - 2) < 0 .0001 

1 .4141 X 1 .4141 = 1 .99967881 
1 .4142 X 1 .4142 = 1 .99996164 
1 .4143 X 1 .4143 = 2.00024449 

sqrt 2 = 1.4142 

is an acceptable answer. 
In order to construct sqrt we shall use Newton's method for finding the 

roots of a given function . This is an iterative method which repeatedly 
improves approximations to the answer until the required degree of accuracy 
is achieved.  In the case of square roots ,  Newton's method says that if Yn is 
an approximation to ,,;x, then: 

is a better approximation. For example, taking x = 2 and Yo = x ,  we have: 

Yo 
Yl = (2 + 2/2)/2 
Y2 = (1 .5 + 2/1 .5)/2 

= 2 
= 1 .5  
= 1.4167 

Y3 = (1 .4167 + 2/ 1 .4167) = 1.4142157 

and so on . By iterating this process we can determine V2 to any required 
degree of accuracy, subject to the limitations of computer arithmetic. 
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There are three logically distinct components in the definition of sqrt by 
Newton's method. First ,  there is the function: 

improve x y = (y + x/y)/2 

which generates a new approximation ( improve x y )  from an approximation 
y .  Second, there is the termination condition: 

satis x y = abs (y � 2  - x) < eps 

which tests when an approximation is good enough. Finally, there is the 
general idea of repeatedly applying a function f to an initial value until some 
condition p becomes true. This idea can be expressed as a function until, 
defined as follows: 

until p f x = x ,  if p x 

Th,e type of until is: 

until p f (J x) ,  otherwise 

until : :  (0 ---? bool) ---? (0 ---? 0) ---? 0 ---? 0 

Thus , until takes a function p : : 0 ---? bool, a function f : :  0 ---? 0 ,  and a value 
x : :  0 as arguments ,  and returns a value of type o. The function until is an 
example of a recursive function. If p x = False , then the value of ( until p f x )  
is defined in  terms of another value of until . Recursive definitions will be 
studied in detail in Chapter 5. 

Putting these functions together, we have: 

sqrt x = until ( satis x )  (improve x )  x 

Since the functions improve and satis are specific to square roots, an alter
native way of writing the above definition is: 

sqrt x = until satis improve x 
where satis y = abs ( y  � 2 - x )  < eps 

improve y = (V + x/y)/2 

In this version, the functions satis and improve are made local to the defini
tion of sqrt . One advantage of local functions is that they can refer to the 
arguments of the main function directly. Thus , as local functions, satis and 
improve do not have to name x as an explicit argument . 

The definition of sqrt is assembled from three component functions and is 
an example of a modular style of programming. In this style , definitions are 
constructed out of combinations of simpler functions. Such definitions are 
easy to understand and easy to modify. To illustrate this, let us formulate a 
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more general statement of Newton's method. The full statement of Newton's 
method says that if y is an approximation to a root of a function f,  then: 

fey) 
y -

f'(y) 

is a better approximation, where f'(y) is the derivative of f evaluated at y .  
For example, with f(x ) = x2 - a, we obtain fl (X ) = 2x and so: 

y _ fey) 
= y _ y2 _ a 

= (y + a/y)/2 
fl(y) 2y 

This is the specific approximation function for square roots used above. 
We can define a function deriv for approximating the derivative of a 

function at a given point by: 

deriv f x = (J (x  + dx) - f x )  / dx 
where dx = 0 .0001 

Provided dx is sufficiently small, this gives a reasonable estimate of the deriva
tive of f at x .  We can now construct an alternative definition of sqrt as 
follows :  

newton f = until satis improve 
where satis y 

improve y 
= abs (J y) < eps 
= y - (J y / deriv f y)  
= 0 .0001 

sqrt x 
eps 

= newton f x 
where f y = y � 2 - x 

This program is more general than the previous one. For example, we can 
define a cube root function cubrt by: 

Exercises 

cubrt x = newton f x 
where f y = y � 3 - x 

2 . 1 . 1 The operators X and div have the same binding power and associate 
to the left . What, therefore, is the value of the following expressions? 

3 div 1 X 3 
3 X 7 div 4 

6 div 2 X 8 div 4 

2 . 1 .2 Using the definition of mod given in Section 2 . 1 .3 ,  show that for all 
positive x ,  y and z :  

(x + y) mod z 
x X (y  mod z) = 

(x mod z + y mod z)  mod z 
(x X y) mod (x  X z) 
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2 . 1 .3 Assuming all the integers x, y and z are in range, prove that : 

x div 2 + (x + 1) div 2 = x 
(x  X y) div y = x 

(x div y) div z = x div (y X z ) 

2 . 1 .4 What function is (+(-x) )? 

2 . 1 .5 For what arguments do the following functions return True? 

(= 9) . (2+) . (7x ) 
(3 ) ) · (mod2) 

2 . 1 .6 Which of the following statements are true (if any)? 

( x )  x = ( x x )  
(+) x = ( x+)  
(- ) x = (-x )  

2 . 1 . 7  In  Newton's method, the test for determining whether an approxima
tion y to .jX is good enough was defined to be: 

abs (y � 2  - x)  < eps 

Another test is :  
abs (y  � 2 - x)  < eps X x 

Rewrite the sqrt function to use this test . 

Yet another test for convergence is to stop when two successive approxima
tions y and y' are sufficiently close: 

abs (y - y') < eps X abs y 

Rewrite the definition of sqrt to use this new test . Give reasons why these 
new tests are likely to be superior in practice. 

2.2 Booleans 

Life would be fairly dull if num was the only available data type and the only 
operations were those described in the previous section . At the very least 
we would like to compare numbers and test whether two numerical expres
sions are equal. For this we need the truth-values .  There are two canonical 
expressions for denoting truth-values , namely True and False . These two 
expressions constitute the data type bool of boolean values (named after the 
nineteenth century logician G. Boole) . A function that returns boolean values 
is called a predicate. 

Booleans are important because they are the results returned by the com
parison operators , which are given as follows:  
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= equals 
:F not equals 
< less than 
> greater than 
::; less than or equals 
� greater than or equals 

Here are two simple examples of the use of the comparison operators: 

? 2 = 3 
False 

? 2 < 1 + 3  
1hLe 

All six comparison operators have the same level of precedence and ,  as the 
second example suggests , this is lower than that of the arithmetic operators . 

The comparison operators are not confined to numbers only, but can take 
expressions of arbitrary type as arguments .  The only restriction is that the 
two arguments must have the same type .  If they do not , then the comparison 
causes a type violation and is rejected by the evaluator. Each comparison 
operator is therefore a polymorphic function with type: 

a -+ a -+ bool 

For example, we can evaluate: 

? False = 1hLe 
False 

? False < 1hLe 
1hLe 

Comparisons on boolean values are defined so that False is less than 1hLe. 

2.2.1 Equality 

It is important to bear in mind that an equality test on numbers may not 
return the correct result unless the numbers are integers within the permitted 
range. It follows that fractional numbers should only be compared up to a 
specified tolerance. To be specific, it is better to define a function: 

within eps x y = abs (x  - y) < eps 

and use (within eps) instead of (= ) as a more realistic equality test on frac
tional numbers . 

In essence , the evaluator computes the result of an equality test of the 
form el = e2 by reducing the expressions el and e2 to their canonical form 



26 BASIC DATA TYPES 

and testing whether the two results are identical. If the expressions do not 
have a canonical representation, then the result of the test is the undefined 
value .L In particular, function values have no canonical representation, so 
testing functions for equality always results in .L. For example, suppose: 

Then we have: 

double x = x + x 

square x x X x 

( double = square) = .1 

Note the crucial distinction between the equals sign = as used in its 
normal mathematical (or denotational) sense and its use as a computable 
test for equality. In mathematics , the assertion double = square is a false 
statement . In computation, the result of evaluating the test double = square 
is .L .  Similarly, the assertion .1 = .1 is a true statement of mathematics 
(since anything equals itself) , but evaluating .1 = .1 results in the value .L. 
This is not to say that the evaluator is an unmathematical machine, just that 
its behaviour is described by a different set of mathematical rules,  rules that 
are chosen to be executable mechanically. 

2 . 2 . 2  The logical operators 

Boolean values may also be combined using the following logical operators : 

V disjunction (logical 'or ' ) ,  
1\ conjunction (logical 'and') ,  
..., negation (logical 'not ') . 

Here are some examples :  

? 1 < 2 1\ 2 < 3  
True 

? ..., ( 1  < 2)  
False 

? 3 < 2 1\  (2 < 3 V 1 = 2) 
False 

As for the rules of precedence, the operator 1\ of conjunction binds more 
tightly than the disjunction operator V ,  and negation ..., binds tightest of 
all . However, it is always good practice to put in brackets whenever there is 
the slightest doubt about the intended meaning of an expression, and such a 
course should always be adopted for the logical connectives . 
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2 . 2 . 3  Examples 

Let us now give some examples involving boolean values. First , suppose we 
want function to determine whether a year is a leap year or not . In the 
Gregorian calendar, a leap year is a year that is divisible by 4, except that if 
it is divisible by 100, then it must also be divisible by 400 . We can express 
this in a number of equivalent ways . One is to define: 

leap y = (y  mod 4 = 0) A (y  mod 100 ::j:. 0 V Y mod 400 = 0) 

Another is to use a definition by cases : 

leap y = (y  mod 400 = 0) ,  if y mod 100 = 0 
= (y  mod 4 = 0 ) ,  otherwise 

Next , suppose we want to construct a function, analyse say, which takes 
three positive numbers a, b and c in non-decreasing order, representing the 
lengths of the sides of a possible triangle. The function analyse is to return 
one of the numbers 0, 1, 2 or 3 depending on whether: (0 ) the sides do 
not form a proper triangle; ( 1 )  they form an equilateral triangle; or (2) an 
isosceles triangle; or (3) a scalene triangle. 

Three sides form a proper triangle if and only if the length of the longest 
side c is less than the sum of the lengths of the other two sides , a and b .  
The triangle will be equilateral if all the lengths are equal, isosceles i f  just 
two of the lengths are equal, and scalene if all lengths are different . We can 
organise this information as follows :  

analyse a b c  0 ,  if a + b � c 
1 ,  i f  a + b > c A a = c 
2, if a + b > c A a ::j:. c A ( a = b V b = c) 
3 ,  i f  a + b > c A a < b A b < c 

Under the asumption that 0 < a � b � c ,  all the guards are disjoint and,  
taken together , include all possible cases . 

If no guard evaluates to True, then the result of a function defined by 
cases is the undefined value ..L. For example, the following function is defined 
for non-negative numbers only: 

pred n 0 ,  i f  n = 0 
n - 1 ,  if n > 0 

Finally, note that all the alternatives in a conditional definition must have 
the same type. Since numbers are not booleans , the following script is illegal 
and causes a type violation: 

bad x 1 ,  if x > 1 
= False, otherwise 
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Exercises 

2 .2 .1 For each of the following expressions, say whether or not it is well
formed. If the expression is well-formed, then give its value; otherwise ,  say 
whether the error is a syntax-error, type-error, or some other kind: 

(3 = - - 3) 1\ True 
1 1\ 1 = 2  

( 1  < x 1\ x < 100) V x = True V x = False 
False = ( 1  < 3) 

2 .2 .2 Define a function sumsqrs which takes three numbers and returns the 
sum of the squares of the larger two. 

2.3 Characters and strings 

Mathematicians would be happy if given just numbers and booleans to play 
with, but computer scientists prefer to fill their terminal screens with more 
interesting kinds of squiggles . The ASCII character set gives 128 characters , 
composed of both visible signs and control characters . These characters con
stitute the data type char and are provided as primitive. The denotation for 
characters is to enclose them in single quotation marks. Thus: 

? 'a' 
'a' 

? '7' 
' 7' 

? ' , 
, , 

It is important to understand that the character ' 7 ' is quite a different entity 
from the decimal number 7: the former is a character and is a member of 
the type char , while the latter denotes a number and is a member of the 
type num. As with the case of decimals, these primitive expressions cannot 
be further evaluated and are simply redisplayed by the evaluator. The third 
example shows one way of denoting the space character . For the purposes 
of this book, it is convenient to introduce special symbols for denoting the 
two most important non-visible control characters : space and newline. The 
newline character will be denoted by the sign '1" and, whenever it is desirable 
for reasons of legibility, the space character will be denoted by the sign ' u ' .  

Two primitive functions are provided for processing characters , code and 
decode . The function code : :  char ---l> num converts a character to the integer 
corresponding to its ASCII code number, and decode : : num ---l> char does 
the reverse. For example: 
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? code 'b ' 
98 

? decode 98 
'b '  

? decode ( code 'b '  + 1) 
'c '  

? code '1' 
10  

29 

Characters can be compared and tested for equality, just as  any other 
type,  and the linear ordering on letters is ,  in part , just what one would 
expect . Thus: 

? 'a' < 'z ' 

1Tue 

In ASCII, upper-case letters have a lower code number than lower-case letters, 
so: 

? 'A' < 'a' 
1Tue 

Using this information we can define simple functions on characters . For 
instance, here are three functions for determining whether a character is a 
digit , a lower-case letter ,  or an upper-case letter : 

isdigit x = '0 ' � x A x � '9 ' 
isupper x = 'A' � x A x � 'Z' 
islower x = 'a' � x A x � 'z ' 

Next , we can define a function for converting lower-case letters to upper-case: 

capitalise .. char -+ char 
capitalise x = decode ( offset + code x ) , if islower x 

= x ,  otherwise 
where offset = code 'A' - code 'a' 

This definition uses the fact that the lower- and upper-case letters have codes 
which are in numerical sequence, but does not depend on their actual values . 
In particular, we can calculate: 

capitalise 'a' = decode ( offset + code 'a') 
= decode « code 'A' - code 'a') + code 'a') 
= decode ( code 'A') 
= 'A' 

without knowing the ASCII codes for 'A' and 'a' .  
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2 .3.1 Strings 

A sequence of characters is called a string. Strings are denoted by using 
double quotation marks . The difference between 'a' and "a" is that the 
former is a character, while the latter is a list of characters which happens 
to contain only one element . Lists in general will be the topic of the next 
chapter. 

Comparisons on strings follow the normal lexicographic ordering, so we 
have: 

? "hello" < "hallo" 
False 

? "Jo" < "Joanna" 
True 

The most important feature of strings is how they are printed: 

? "a" 
a 

? "Hello" 
Hello 

? "This sentence contains 1a newline." 
This sentence contains 
a newline. 

Unlike any other data type,  strings are printed literally. This means: (i) 
the double quotation marks do not appear in the output ; and (ii) special 
characters , such as '1' , are printed as the actual character they represent . 
This printing convention for strings gives complete control over the layout of 
results ,  as we shall now see. 

2 .3.2 Layout 

Depending on the application, a programmer may want to produce tables 
of numbers , pictures of various kinds , or formatted text . Provided we as
sume the existence of one new primitive function, called show , the printing 
convention for strings described above gives us all the control we need . The 
function show takes an arbitrary value as argument and, provided the value 
is well-defined, converts it to a printable representation. The type of show is 
given by: 

show : : a � string 
Here, string is the type which consists of lists of characters . For example, 
the value of (show n) for a number n is the list of characters which make up 
the decimal representation of n, so we have: 

show 42 = "42" 
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Similarly, ( show b) for a boolean b returns the string which prints as  the 
representation of b, so: 

show True = "'True" 

The function show can also be applied to characters and strings. We have 
for instance that: 

show 'a' = " 'a' " 
show "hello" = " "hello" "  

If the result of an evaluation i s  not a string, then the evaluator automatically 
applies the function show . If it is a string, then it is printed literally. Hence 
we have: 

? "me how" 
me how 

? show "me how" 
"me how" 

? show ( "me" , "how") = "(me,how)" 
False 

? show ( "me" , "how") 
( "me" , "how") 

More interesting examples are possible if we make use of the operation * 
which concatenates lists together : 

? "The year isu" * show (3 X 667) 
The year is 2001 

? show 100 * "1" * show 101  * "1" * show 102 
100 
101 
102 

When printing strings it is sometimes useful to have control over just 
where on the line the value of an expression appears . Most usually we want 
the value to appear either on the left ( 'left-justified' ) ,  or on the right ( 'right
justified' ) ,  or in the centre ( 'centre-justified' ) .  We define functions: 

ljustify ,  cjustify, rjustify :: num -+ string -+ string 

so that ( ljustify n x ) is the string x padded with extra spaces on the right 
to make a string of total width n, ( cjustify n x ) is the string x centred with 
spaces on both sides , and (rjustify n x ) is x with spaces on the left . 

In order to define these functions, we shall suppose the existence of a 
function width which returns the 'width' of a string when printed. This is 
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a measure of the horizontal space occupied by the string. For a string of 
characters in a fixed-width fount, the function width just returns the number 
of characters in the string. We also need a function space so that ( space n) 
returns a string of space characters whose width is n. Again , for fixed-width 
founts this will be just a string containing n spaces. 

We can now define the layout functions as follows :  

ljustify n x = x * space (n - m),  if  n � m 
where m = width x 

rjustify n x = space (n - m) * x ,  if n � m 
where m = width x 

cjustify n x = space 1m * x * space rm ,  if n � m 
where m = width x 

1m = (n  - m) div 2 
rm = (n  - m) - 1m 

All three functions are partial, returning .1 if the string is too long to fit in 
the given width . 

Exercises 

2 .3 . 1  Define a function nextlet which takes a letter of the alphabet and 
returns the letter coming immediately after it . Assume that letter A follows 
Z .  

2 .3 . 2  Define a function digitva1 which converts a digit character to its cor
responding numerical value. 

2 .3 .3  Put the following strings in ascending order: "McMillan" , "Macmil
Ian" , and "MacMillan" . 

2 . 3 .4 What are the values of the following expressions? 

show (show 42) 
show 42 * show 42 

show ")" 

2 .3 .5  Define total versions of the justification functions of Section 2 .3 .2  so 
that , for example , ( cjustify n z ) returns z if its length is longer than n.  

2.4 Tuples 

One way of combining types to form new ones is by pairing them. For 
example, the type ( num, char) consists of all pairs of values for which the first 
component is ::. number and the second a character . In particular, (3 ,  'a') and 
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(17 .3 , '+ ') are both values of type (num, char) .  The type (a, (3) corresponds 
to the cartesian product operation of set theory, where the notation a X (3 is 
more often seen. 

We can evaluate expressions involving pairs of values :  

? (4  + 2 , 'a ') 
(6 ,  'a') 

? (3 , 4) = (4, 3) 
False 

? (3 , 6) < (4, 2)  
True 

? (3 , ( "a" ,  False» < (3 , ( "a" , True» 
True 

The ordering on pairs of values is given by the rule that (x ,  y) < (u,  v) if 
x < u, or if x = u and y < v. This is called the lexicographic or 'dictionary' 
ordering. Thus , since False < True , we have ( "a" , False) < ( "a" , True) ,  and 
so (3 , ( "a" , False» < (3 , ( "a" , True» . 

As well as forming pairs of values ,  we can also form triples , quadruples 
and so on. (There is no concept of a one- tuple, so th e use of b rackets for 
grouping does not conflict with their use in tuple formation . )  For example, 
(num, char , bool) , is the type of triples of values , each value consisting of a 
number, a character and a boolean in that order. 

Each of the types (0: , (,8 , /,» ,  ( (a , ,8) , /,) and (a , ,8 , /') is distinct: the first 
is a pair whose second component is also a pair, the second is a pair whose 
first component is a pair, and the third is a triple. Pairs , triples , quadruples ,  
and so  on, all belong to different types. One advantage of this system of 
tuples is that if, for example , one inadvertently writes a pair instead of a 
triple in an expression, then the strong typing discipline can pinpoint the 
error. 

Here are some simple functions on tuples. First , we define the selection 
functions : 

fst . .  (a , ,8) -t 0: 

fst (x ,  y) = x 

snd . .  (a , ,8) -t (3  
snd (x ,  y) = y 

Both fst and snd are polymorphic functions ; they select the first and second 
component of the pair respectively. Neither function works on any other 
tuple-type. If we want to have selection functions for other kinds of tuple, 
then they have to be defined separately for each case. For example, we can 
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define: 
fst3 (x , y , z) = x 
snd3 (x , y , z) = y 
thd3 (x , y ,  z) z 
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Here is a function which returns the quotient and remainder of one num
ber by another: 

quotrem 
quotrem (x ,  y) 

. .  (num, num) -t (num, num) 
= (x div y ,  x mod y) 

Finally, here is a function which computes the roots of a quadratic equa
tion with coefficients (a ,  b, c) : 

roots . .  (num, num, num) -t (num, num) 
roots ( a , b , c) = ( r1 , r2 ) ,  if d � 0 

where r1 = ( - b + r)/ (2 x a) 
r2 = ( - b - r)/ (2 x a) 
r = sqrt d 
d = b � 2 - 4 x a x c 

2 .4 .1  Example : rat ional arithmetic 

A fraction or, more properly speaking, a rational number is a pair ( x ,  y) of 
integers which represents the number x/y o  For example , ( 1 , 7 ) ,  (3 , 21) and 
(168 , 1 176) all denote the fraction 1/7. Only fractions (x, y )  with y i' 0 
represent well-defined values . A fraction (x , y) is said to be in its lowest 
terms if x and y are relatively prime; in other words , if the greatest common 
divisor (gcd x y) of x and y is 1. A negative fraction is represented by a 
pair ( x ,  y )  for which x alone is negative , and the number 0 is represented by 
(0 , 1) . 

We can restate these conditions in alternative terminology which we have 
used before. The canonical representation of a fraction is a pair (x ,  y) of 
integers such that y > 0 and gcd ( abs x )  y = 1 . If fractions r and s have 
canonical representations ( x ,  y) and ( u ,  v ) ,  then r = s if and only if x = u and 
y = v, so two fractions are equal just when their canonical representations 
are identical. 

Let us define functions to perform addition, subtraction, multiplication 
and division of fractions , ensuring that the results are in canonical form. The 
definitions below should be easy to follow: 

radd (x , y) (u , v )  = norm (x x v + u x y , y x v) 
rsub (x , y ) (u , v )  norm (x X V - U X Y , Y X V) 
rmul (x , y) (u , v) = norm (x X u, y X v) 
rdiv (x , y) (u , v )  = norm (x X v , y X u) 



2.4 TUPLES 

where: 
norm (x , y)  (u  div d,  v div d) ,  if  y :j;  0 

where u = ( sign y) X x 
v abs y 
d gcd ( abs u) v 
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Function abs returns the absolute value of its argument , and sign returns 1 ,0 
or - 1  depending on whether its argument is positive, zero, or negative. The 
function gcd will be defined in the next chapter. Note that rdiv is a partial 
function which takes the value .1 for the divisor (0 , 1 ) .  

If we define: 

compare op (x ,  y) (u ,  v) = op (x x v) (y x u) 

then we can define comparison operations : 

and so on. 

requals 
rless 
rgreater 

compare (= ) 
= compare ( < )  
= compare (»  

Finally, we  give a simple function for printing fractions . The definition 
below uses the function show introduced in the previous section. 

showrat (x , y) 

For example, we can write: 

? showrat (55 ,  8) 
55/8 

? showrat (56 , 8) 
7 

Exercises 

show u, if v = 1 
show u * "/" * show v ,  otherwise 
where (u , v ) = norm (x , y)  

2 . 4 . 1  Suppose a date is represented by a triple (d ,  m,  y)  of three integers, 
where d is the day, m is the month, and y the year . Define a function age 
which takes two dates , the first being the birthdate of some individual P and 
the second the current date, and returns the age of P as a whole number of 
years . 

2 . 4 .2 For a given integer x ,  let (y , z )  be a pair of integers such that : (i) 
abs (y )  :s: 5 ;  (ii) x = y + 10 X z ;  and (iii) z is the number of smallest absolute 
value which satisfies (i) and (ii) . Show that y and z are uniquely determined 
by these conditions , and define a function split so that split x = (y ,  z ) . 
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2.5 Patterns 

It is possible to define functions using patterns on the left-hand sides of 
equations . A simple example, involving the boolean values True and False, 
is given by the equations : 

eond True x y = x 
eond False x y = y 

These equations can be written in any order since the two patterns True and 
False are distinct and cover all possible boolean values . The given definition 
of eond is equivalent to: 

eond p x y x, if p = True 
= y, if p = False 

As another example, we can define the logical connectives using patterns . 
For instance: 

True /I. x 
False /I. x 

x 
False 

True V x True 
False V x = x 

These equations define the operators (/I.) and (V)  using patterns for the first 
argument. It is also possible to define versions using patterns for the second 
argument , or indeed for both arguments simultaneously. 

We can also define functions over the natural numbers (that is ,  the non
negative integers) using patterns . A simple example is: 

permute 0 1 
permute 1 2 
permute 2 0 

These equations define a function permute which returns a well-defined result 
only if its argument is one of the numbers 0, 1 or 2 . The definition of permute 
is equivalent to the following one : 

permute n 1 ,  if n = 0 
2, if n = 1 
0 ,  if n = 2 

We can also use patterns containing variables . For example, the following 
definition describes a version of the predecessor function : 

pred 0 0 
pred (n + 1) n 
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In this definition, the pattern (n  + 1 )  can only be 'matched' by a value if n 
matches a natural number .  Hence pred is defined for natural numbers only. 
Notice that the two patterns 0 and (n  + 1) are exhaustive in that they cover 
all natural numbers, and disjoint in that no natural number matches more 
than one pattern (since n itself must match a natural number) . It therefore 
does not matter in which order we write the two equations defining pred. 

Here is another example of a function defined by pattern matching: 

count 0 = 0 
count 1 = 1 
count (n + 2) 2 

Like pred, the function count is defined for natural numbers only. It returns 
the values 0, 1 or 2, depending on whether its argument is 0, 1 or greater 
than 1 . Since n must match a natural number, the three patterns 0, 1 and 
(n + 2) are disjoint and exhaustive, and the equations can be written in any 
order. 

Pattern matching is one of the cornerstones of an equational style of 
definition; more often than not it leads to a cleaner and more readily under
standable definition than a style based on conditional equations. As we shall 
see, it also simplifies the process of reasoning formally about functions. 

Exercises 

2 . 5 . 1  Define versions of the functions (1\) and (V) using patterns for the 
second argument. Define versions which use patterns for both arguments .  
Draw up a table showing the values of and and or  for each version. 

2 . 5 .2 Is the definition of pred given in the text equivalent to the following 
one? 

2.6 Functions 

pred n = 0 ,  if n = 0 
= n - 1 , if n >  0 

As has been suggested by many of the foregoing examples ,  the source types 
and target types of functions are not restricted in any way: functions can 
take any kind of value as argument and return any kind of value as result . 
In particular, these values may themselves be functions . A function which 
takes a function as argument , or delivers one as result , is called a higher-order 
function. Notwithstanding the rather elevated terminology, the idea is very 
simple and not at all mysterious . The differential operator of calculus, for 
example, is a higher-order function which takes a function as argument and 
returns a function , the derivative, as result . The function 10gb for varying b 
is another example. We automatically define a higher-order function when 
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currying arguments ,  and examples of curried functions have already been 
seen . In this section we consider further aspects of functions. 

2.6 .1  Functional composit ion 

The composition of two functions f and g is the function h such that h x = 

f (g x ) . Functional composition is denoted by the operator ( . ) .  We have: 

The type of ( - ) is given by: 

(f . g) x = f (g x ) 

( .) : :  ((3 -t ,) -t (0: -t (3) -t (0: -t ,) 

Functional composition takes a function of type (0: -t (3) on the right, a 
function of type ((3 -t ,) on its left , and returns a function of type (a -t , ) . 
Thus ( . ) is another example of a polymorphic function which can assume 
different instances in different expressions (and even within the same expres
sion) .  The only restriction is that the source type of its left-hand argument 
must agree with the target type of its right-hand argument , and this is just 
what is expressed in the type declaration above. 

Functional composition is an associative operation . We have: 

(f . g) . h = f . (g . h)  

for all functions f ,  g and h . Accordingly, there is no need to put in brackets 
when writing sequences of compositions . 

One advantage of functional composition is that some definitions can be 
written more concisely. For example, rather than defining a function by a 
scheme of the form: 

soln x = functionl (function2 (function3 x ) )  

we can write more simply: 

soln = functionl · function2 . function3 

2 .6 .2  Operators 

As we have seen, a binary operator is just like a function, the only difference 
being that it is written between its two arguments rather than before them. 
We can also section operators to convert them to prefix form and pass them 
as arguments to other functions. 

We can also define new operators. For example , consider the operations 
of rational arithmetic discussed in Section 2.4. Instead of defining: 

radd (x , y) (u , v )  = 
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we can also define radd as an operator: 

(x , y) Ef1 (u , v )  = 

Similarly for the other functions . In this book, we shall denote all operators 
by special symbols , such as Ef1 ,  0 ,  *, and so on, or by writing their names 
in bold fount . (At a terminal with a restricted set of founts ,  operators can 
be denoted by some special convention, such as prefixing a name with the 
character $ . )  To avoid fuss, we shall suppose all non-primitive operators have 
the same binding power and associate to the right ; they can also be sectioned 
to convert them to prefix form (see Section 2 . 1 ) .  

One good test of whether to define a function as an operator i s  to  see if  the 
operation is associative. Since the rational addition operator Ef1 is associative, 
it is more pleasant to be able to write: 

than to distinguish artificially between: 

radd (radd x y) z and mdd x (radd y z) 

2 .6.3 Inverse functions 

Suppose I : : A -+ B has the property that distinct values in A are mapped 
to distinct values in B. Thus : 

I x = I y if and only if x = y 

for all x and y in A .  Such a function is said to be injective. With every 
injective function I there corresponds a second function , called the inverse 
of I and denoted by 1-1 , which satisfies the equation: 

r\l x) = x  

for all x in A. For example, the function: 

I 
I x  

is injective and has inverse: 

num -+ (num, num) 
= ( sign x ,  abs x) 

It is quite common in mathematical specifications to specify a function I by 
the requirement that it should be the inverse of a given function 9 known to 
be injective. For example , one way to specify the function sqrt is to say: 

sqrt ( square x )  = x 
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for all x � O. The function square is injective on the non-negative numbers . 
The use of inverse functions as a method of specification gives no hint as 

to how an executable (or constructive) definition might be formulated. The 
task of a programmer is to synthesise a constructive definition which meets 
the specification. In later chapters we shall meet a number of instances of this 
idea. It will not in general be the case that an injective function I :: A -t B 
has an inverse 1-1 that satisfies the further equation 

for all y in B.  This only happens when I has the additional property that 
for every y in B there exists some x in A such that I x = y . A function 
satisfying this condition is said to be surjective. If I is both injective and 
surjective, then I is said to be bijective. 

If f : : A -t B is surjective, but not necessarily bijective, then it is still 
possible to specify g by the requirement that : 

f (g x )  = x 

for all x in B .  In general, though, there will be more than one function g 
which satisfies the equation. For instance, taking f (x ,  y) = x X y, we have 
that each of: 

gl x (sign x , abs x )  
g2 x (x , l) 
g3 x (2 X x , x /2) 

is a possible definition of g . In the absence of any further constraints, each 
definition is perfectly satisfactory. We shall also meet examples of this kind 
of specification later on. 

2.6.4 Strict and non-strict funct ions 

So far we have seen some examples of polymorphic functions, but other kinds 
of value can be polymorphic too. In particular, the special value ..L is poly
morphic. In other words , ..L is a value of every type.  This means that any 
function f may, conceptually at least, be applied to ..L. If f..L = ..L ,  then f 
is said to be a strict function; otherwise it is non-strict. Most of the com
mon functions of arithmetic are strict functions and only return well-defined 
results for well-defined arguments .  

The idea of a non-strict function may seem strange at first sight , since 
it seems to entail getting something for nothing. However , such functions 
are perfectly possible and can be very useful. Consider, for instance, the 
following definition: 

three num -t num 
three x 3 

Suppose we submit the above definition to the evaluator , enter a session and 
type three ( 1 /0) . This is what would happen : 
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? three (1/0) 
3 
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What has happened is that the evaluator does not require the value of the 
argument to three in order to determine the result , so it does not attempt 
to evaluate it. The value of 1/0 is ..l ,  so three ..l '" ..l and the function is 
non-strict .  

For a number of reasons, a non-strict semantics is preferable to a strict 
one. First ,  it makes reasoning about equality easier. For example, with a 
non-strict semantics we can reason that 

2 + three x = 5 

for all x ,  by straightforward substitution of the definition of three into the 
left-hand side. No qualification about x possessing a well-defined value is 
necessary. A non-strict semantics leads to a simpler and more uniform treat
ment of substitution, and hence to a simpler logical basis for reasoning about 
the correctness of functional programs . 

There are other advantages too: we can define new control structures by 
defining new functions . To illustrate, we can define a function cond, with 
type ( bool � a � a � a) , which exactly matches the control structure 
provided by conditional definitions : 

cond p x y = x ,  if p 
y ,  otherwise 

For example, instead of defining: 

we can write: 

recip x = 0, if x = 0 
= l/x , otherwise 

recip x = cond (x = 0) 0 (l/x)  

Under a non-strict semantics, the evaluation of (cond True x y) does not 
require the value of y so it is not computed; similarly, the evaluation of 
( cond False x y) does not require the value of x . The function cond is ,  of 
course, strict in its first argument since this value is needed to determine the 
answer. In particular, we have: 

recip 0 = cond (0 = 0) 0 (1/0) = cond True 0 ..l = 0 

On the other hand, with a strict semantics we would have: 

recip 0 = cond (0 = 0) 0 ( 1 /0) = cond True 0 ..l = ..l 

Therefore, with a strict semantics, cond does not r.orrespond to a conditional 
definition. 
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We have met other examples of non-strict functions in previous sec
tions. For example, the pairing operation ( x ,  y) is non-strict . The values 
(J.. , J.. ) ,  ( x , J.. ) and (J.. , y ) are all distinct provided x =I J.. and y =I J... Thus , 
the selection functions fst and snd are also non-strict . To illustrate :  

? fst (1  + 0, 1/0) 
1 

? snd (1/0 , 1 + 0)  
1 

The operational explanation of strict and non-strict functions is in terms 
of reduction strategies . For example, an evaluator may reduce expressions of 
the form fst ( x ,  y) in one of two ways: it may first try to reduce the expressions 
x and y to their simplest possible form, and only when this stage is complete 
go on to apply the rule for fst and so select the value of x .  Alternatively, 
it may apply the rule for fst immediately. In this case, the expression y is 
not reduced, so it is irrelevant whether or not it has a well-defined value (of 
course, it must still be syntactically correct and possess a well-defined type) . 
The first strategy is called eager-evaluation, while the second is called lazy
evaluation. Further details of how they work will be explained in Chapter 6. 

Exercises 

2 . 6 . 1  Suppose h x y = f (g x y) . Which of the following statements are true? 

h = f · g 
h x  

h x y  
f . (g x )  

= (f · g) x y  

2 . 6 . 2  Write down a definition of a function with type (num --+ num) which 
returns no well-defined values . 

2 .6 .3  Consider the function halve = (div2) .  Is it possible to specify a func
tion f by the requirement : 

f (halve x )  = x 

for all natural numbers x ?  Give one function f that satisfies the equation : 

halve (J x) = x 

2 . 6 .4 Show that the function (J . g) is strict if both f and 9 are strict . 

2 .6 . 5  Define the operators of logical conjunction and disjunction, using only 
the function condo Draw up a table showing their values for all possible 
arguments ,  well-defined or otherwise .  
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2 .7  Type synonyms 

Although it is a good idea to declare the types of the functions we define, 
it is sometimes inconvenient , or at least unilluminating, to spell them out 
in terms of the basic types . A better method is to use type synonyms. A 
type synonym enables the programmer to introduce a new name for a given 
type.  For example, suppose we want to define a function, move say, which 
takes a number, representing a distance, an angle and a pair consisting of a 
coordinate position, and moves to a new position as indicated by the angle 
and distance. We can introduce type synonyms for these values as follows:  

position 
angle 

distance 

(num, num) 
num 
num 

Notice the special symbol = =  used in the declaration of type synonyms; this 
avoids confusion with a value definition . 

N ow we can declare the type and definition of move in the following way: 

move 
move d a (x , y) 

distance -t angle -t position -t position 
= ( x + d x cos a , y + d x sin a) 

This type declaration of move is both short and helpful in understanding 
what the function does . 

In an earlier section we used the word string as a synonym for a list of 
characters . In fact we have: 

string == [char] 

which formalises the terminology (as we shall see in the next chapter, the 
type of lists of values of type a is denoted by raJ ) .  

Type synonyms cannot be recursive. Every synonym must be expressible 
in terms of existing types, and this would not be possible if synonyms were 
allowed to depend on one another. 

Type synonyms can also be generic in that they can be parameterised by 
type variables. For example: 

pairs a 
automorph a 

are all valid synonym declarations .  

2 .8  Typ e  inference 

So far we have not given any details of how the evaluator deduces the types of 
expressions and definitions . Although it is not essential for the programmer 
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to be aware of the precise mechanism, it is instructive to give the general 
idea by following the method through on some examples. 

1 .  First let us consider functional composition, defined by the equation: 

( - ) f 9 x = f (g x ) 

The process of type inference begins by assigning types to the argument 
names on the left-hand side, and a type to the result . Thus , we have : 

f . .  tl 
9 . .  t2 
x . .  t3 

f (g x ) . .  t4 

where tl , t2 , t3 and t4 are new type names. The type of ( . ) is therefore 
given by: 

( - ) : :  tl � t2 � t3 � t4 

This does not complete the process since there are certain relationships be
tween the new types that must be taken into account . In order to see what 
these relationships are, we must analyse the defining expression f (g x ) .  

To analyse an expression, we make use of the following three rules : 

(i) (Application rule) If f x : :  t ,  then x :: t' and f : :  t' � t for some new 
type t' ; 

(ii) (Equality rule) If both the types x : :  t and x : :  t' can be deduced for a 
variable x ,  then t = t' ; 

(iii) (Function rule) If t � u = t' � u', then t = t' and u = u'. 

Using the application rule on f (g x ) : :  t4 , we deduce that :  

9 x . . t5 
f .. t5 � t4 

for some new type t5 . Similarly, from 9 x :: t5 we deduce that : 

x . . t6 
9 . .  t6 � t5 

for some new type t6 . 
Using the equality rule, we can now obtain the following identities : 

tl = t5 � t4 
t2 = t6 � t5 
t3 = t6 
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This completes the type analysis for the present example. The type we can 
deduce for ( -) is :  

( .) : :  ( t5 --+ t4 ) --+ ( t6 --+ t5 ) --+ t6 --+ t4 

As a final step , we can replace the type names by generic type variables , 
giving: 

( -) :: «(3 --+ 1) --+ (a --+ (3) --+ a --+ 1 
as the inferred type of functional composition . 

2. Next , consider the definition: 

I x y  = Ist x + lst y 

This time, the right hand side contains occurrences of names which do not 
appear on the left , namely (+) and 1st . We suppose: 

(+)  : :  num --+ num --+ num 
1st : :  (a, (3) --+ a  

As a necessary first step , we must take account of the fact that the two 
occurrences of the polymorphic function 1st need not receive the same in
stantiations for the type variables a and (3. After all , the expression: 

1st ( 1 ,  True) + 1st ( 1 , 42) 

is well-typed, even though the first occurrence of 1st has type (num, bool) --+ 

num, and the second has type (num, num) --+ num. To deal with this point, 
we rewrite the definition of I in the form: 

I x y = Istl X + Ist2 y 

and assume two different instantiations: 

of the general type of 1st .  

Istl . . (u1 , u2 ) --+ u1 
Ist2 : :  ( v1 , v2 ) --+ v1 

Now we proceed as in the first example, introducing the types: 

x . .  t1 
Y . .  t2 

Istl x + /st2 y . .  t3 

so that I has type t1 --+ t2 --+ t3 . 
Writing the right-hand side of the definition of I in the form: 

( + ) (fstl x )  (fst2 y) ,  
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we can now use the application rule to deduce : 

(fst2 y) . . t4 
( + ) (fst} x)  . .  t 4  -+ t3 

Further application of the rule gives: 

y . .  t5 
fst2 . .  t5  -+ t4 

(fst} x )  . . t6 
(+) . . t6 -+ t4 -+ t3 

x . . t7 
1st} . .  t7 -+ t6 
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Using the function rule and equality rule together, we derive: 

t1 = t7 
t2 = t5 = (v1 , v2 )  

t 3  = t 4  = t 6  = v1 = u1  = num 
t7 = (u1 , u2) 

Hence the type derived for I is :  

(num, u2 )  -+ (num, v2 )  -+ num 

Finally, we replace the unconstrained type names by generic type variables 
to obtain: 

I : :  (num, a) -+ (num, {3) -+ num 

as the inferred type for f .  

3 .  Next , consider the definition: 

fix I = I (fix f)  

To deduce a type for fix ,  we proceed as before and introduce the types : 

so that fix : : t1 -+ t2 . 

I . .  tt 
I (fix f) . .  t2 

Analysing the expression I (fix f) by the application rule, we obtain: 

f . . t3 -+ t2 
fix I . .  t3 

fix . . t4 -+ t3 
I . . t4 
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Using the equality and function rules , we obtain the identities: 

tl = t4 = t3 --4 t2 
t2 = t3 
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so that fix : :  ( t3 --4 t3) --4 t3 . Finally, replacing t3 by a generic type variable, 
we get : 

fix : :  (a --4 a) --4 a 
as the inferred type for fix . 

4. Finally, let us consider an example where typing goes wrong. Suppose we 
define: 

selfapply f = f f 

Proceeding as before ,  we introduce new types: 

f : :  tl 
f f : :  t2 

so that selfapply : :  tl --4 t2 . In this case, the application and equality rules 
give: 

t1 = t1 --4 t2 

This equation does not possess a solution for t1 and the definition of selfapply 
is rejected by the type analyser. 

Exercises 

2 . 8 . 1  Suppose the functions const , subst and fix are defined by the equations: 

Deduce their types . 

const x y 
subst f g x 
fix f x 

x 
f x (g x ) 

= f (fix f) x 

2 . 8 . 2  Show that the identity function id is equal to (subst const const) , where 
subst and const are as defined in the previous question. The function compose 
can also be expressed in terms of these functions . How? 

2 .8 .3  Define the function apply which applies its first argument to its second. 
What is its type? What is the relationship between apply and id? 

2 . 8 .4 Suppose the function query is defined by: 

query f x g  = g f (J x g) 

Is there a sensible type which can be assigned to this function? If not, explain 
why. 
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Lists 

The next two chapters are about lists ,  their operations and their uses . Lists 
are as important in functional programming as sets are in many branches of 
mathematics . To enumerate a set is to produce a list of its members in some 
order, so the two concepts are closely related. Unlike a set , a particular value 
may occur more than once in a given list , and the order of the elements is 
significant . 

There are many useful operations on lists .  Lists can be taken apart , or 
rearranged and combined with other lists to form new lists ;  lists of numbers 
can be summed and multiplied; and lists of lists can be concatenated together 
to form one long list . Most of the present chapter will be concerned with 
introducing the more important list operations and giving simple examples 
of their use. The next chapter will be devoted to more substantial examples . 
We shall also mention some of the algebraic laws which govern the operations. 
For the moment , however, formal definitions and proofs will not be given. 
This will be done in Chapter 5 when we discuss recursive definitions and the 
formal basis for conducting reasoning about functions. 

3 . 1  List notation 

By definition, a list i s  a linearly ordered collection of values ; one can talk 
about the first element of a list , the second element , and so on. Lists are also 
called sequences, a term more often found in other branches of mathematics, 
but there is no difference between the concepts and we shall use the two words 
interchangeably. Like sequences in mathematics , a list can contain an infinite 
number of elements .  However, in the present chapter we shall concentrate 
exclusively on finite lists .  Infinite lists will be dealt with in a later chapter .  

An important property of lists is that all the elements of a given list must 
have the same type: one can have a list of numbers , a list of characters , even 
a list of lists (of values all of the same type) , but one cannot mix values of 
different types in the same list . 

48 
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A finite list is denoted using square brackets and commas . For example, 
[ 1 , 2 , 3] is a list of three numbers and ["hallo" , "goodbye" ] is a list of two 
strings . The empty list is written as [ ]  and a singleton list, containing just 
one element a, is written as [a] .  In particular, [[ II is a singleton list , containing 
the empty list as its only member. 

If the elements of a list all have type a, then the list itself will be assigned 
the type [a] (read as 'list of a ') . For example: 

[ 1 , 2 , 3] . .  [num] 
['h ' , 'a' , 'l ' ,  '1 ' ,  '0'] . .  [char] 

[ [1 , 2] ,  [3]] . .  [[ num II 
[(+) , ( x )] . .  [num --+ num --+ num] 

On the other hand, [1 , "fine day" ] is not a well-formed list because its ele
ments have different types. 

Strings, introduced in the previous chapter ,  are just special kinds of lists ,  
namely lists of characters .  Thus , "hallo" i s  just a convenient built-in short
hand for the list ['h' , 'a ' ,  '1' ,  '1' , '0 '] and has type [char] . Hence: 

? ['h '  'a' '1' '1' '0 '] . , , , , 
hallo 

Every generic operation on lists is therefore also applicable to strings . 
The empty list [ ]  is empty of all conceivable values ,  so it is assigned 

the polymorphic type [a] . In any particular expression , [ ]  may have a 
more refined type. For instance, in the expression [ [ ] ,  [1]] the type of [ ]  
is [num] since the second element [1] has this type; similarly, in the expres
sion [ "an" , [ ] , "list" ] the type of [ ]  is [char] since that is the type of the other 
elements .  

Unlike a set , a list may contain the same value more than once. For 
example, [ 1 , 1] is a list of two elements ,  both of which happen to be 1 ,  and 
is distinct from the list [1] which contains only one element . Two lists are 
equal if and only if they contain the same values in the same order. Hence 
we have: 

? [1 , 1] = [1] 
False 

? [1 , 2 , 3] = [3, 2 , 1] 
False 

The special form [a . .  b] is provided to denote the list of numbers in in
creasing order from a to b inclusive, going up in steps of 1. If a > b, then 
[a . .  b] = f l . For example: 

? [1 . . 5] 
[1 , 2, 3 , 4 , 5] 



50 LISTS 

A second special form [a , b . .  c] is also provided; this denotes the arithmetic 
progression a, a + d, a + 2 X d, . . .  , and so on, where d = b - a. For example: 

? [2 , 4  . .  10] 
[2 , 4 , 6 , 8 , 10] 

? [1 . .  5] = [ 1 , 2 . .  5] 
True 

? [4, 3 . .  1] 
[4, 3 , 2 , 1] 

Exercises 

3 . 1 . 1  Give an example of an expression which contains two occurrences of 
the empty list , the first occurrence having type [num] and the second type 
[ char] . 

3 . 1 . 2  Determine the number of elements of [a . .  b] and [a ,  b . .  c] in terms of 
a, b and c .  

3 . 2  List comprehensions 

The final piece of special notation provided for lists is called a list compre
hension. It employs a syntax adapted from conventional mathematics for 
describing sets .  The syntax is : 

[ ( expression) I ( qualifier) ; . . .  ; ( qualifier)] 

in which ( expression) denotes an arbitrary expression, and a ( qualifier) is 
either a boolean-valued expression or a generator. The forms for a generator 
we shall use are:  

and so on. 

( variable) +- ( list) 
( (variable) , (variable) ) +- ( listofpairs) 

( (variable) , (variable) , (variable) ) +- ( listoftriples) 

The best way of explaining what list comprehensions do is to give some 
examples .  A simple starting point is :  

? [x X x I x +- [1 . . 10] ;  even x] 
[4, 16 , 36 , 64, 100] 

This list comprehension reads : "the list of values x X x , where x is drawn 
from the list [1 . .  10] and x is even" . Notice that the order of the elements in 
the result is determined by the order of the elements in the generator. Notice 
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also that x i s  a local or  'dummy' variable which can be replaced by any other 
variable name, and whose scope is confined to the list comprehension. 

We can have more than one generator in a comprehension, in which case 
later generators vary more quickly than their predecessors . For example: 

? [( a ,  b) I a +- [1 . .  3] ; b +- [1 . .  2] ]  
[(1 , 1 ) ,  ( 1 ,  2) ,  (2, 1 ) ,  (2 , 2) ,  (3 ,  1 ) ,  (3 , 2)] 

? [( a ,  b) I b +- [1 . . 2] ;  a +- [1 . .  3]] 
[( 1 , 1 ) ,  (2, 1 ) ,  (3 , 1 ) ,  ( 1 ,  2) ,  (2 , 2) ,  (3 , 2)] 

Furthermore, later generators can depend on the variables introduced by 
earlier ones : 

? [( i , j )  I i +- [1 . . 4] ;  j +- [i + 1 . .  4]] 
[( 1 , 2) ,  ( 1 ,  3 ) ,  ( 1 ,  4) , (2 , 3 ) ,  (2 , 4) ,  (3 , 4)] 

We can freely intersperse generators with boolean-valued expressions: 

? [( i , j) I i +- [1 . . 4] ; even i ;  j +- [i + 1 .  . 4] j odd j] 
[(2 , 3)] 

To illustrate one of the other forms for generators , suppose we define 

pairs = [( i , j )  I i +- [1 . . 2] ;  j +- [1 . . 3]] 

Then we have: 

? [i + j I ( i , j )  +- pairs] 
[2 , 3 , 4, 3 , 4 , 5] 

Finally, the main expression of a comprehension does not have to make 
use of the variable introduced by a generator: 

? [3 I j +- [1 . .  4]] 
[3, 3 , 3 , 3] 

? [x I x +- [1 . .  3] ; y +- [1 , 2] ]  
[1 ,  1 , 2 , 2 , 3 , 3] 

We can use list comprehensions in definitions. For example: 

spaces n = ['u ' I j +- [1 . .  n]] 

The function spaces returns a list of n space characters . 
Here is a function to list the divisors of a positive integer: 

divisors n = [d I d +- [1 . .  n] ; n mod d = 0] 

The function divisors can be used to define the greatest common divisor 
of two positive integers : 

gcd a b = max [d I d +- divisors a j  b mod d = 0] 
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Here, the function max takes a non-empty list of numbers and returns the 
largest number in the list .  We shall see its definition presently. It is left as 
an exercise to modify the definition of gcd to allow zero arguments .  

U sing divisors we can determine whether a number i s  prime: 

prime n = (divisors n = [ 1 ,  n] )  

A number n > 1 i s  prime if the only divisors d i n  the range 1 :::; d :::; n are 
1 and n itself; hence the above definition. Note that divisors 1 = [1] , and 
since the lists [1] and [1 , 1] are not the same, the above definition correctly 
determines that 1 is not a prime. 

The given definition of prime is not particularly efficient , but it is less bad 
than one might suppose. Testing two lists for equality does not necessarily 
involve generating all the members of each list . As soon as two elements in 
corresponding positions are found not to be equal, the test can return False 
without generating any further elements .  Nevertheless, in the case of primes 
there is a simple optimisation. If a number n has a proper divisor (i .e .  a 
divisor d in the range 1 < d < n) , then it must also have one in the range 
2 :::; d :::; ,,[ii. The proof of this fact is left as a simple exercise. It means we 
can define: 

prime n n >  1 i\ [d I d f- [2 . . intsqrt n] ; n mod d = 0] = [ ]  

where ( intsqrt n) returns the largest integer whose square is at most n. 
Next , here is a program to list all Pythagorean triads in a given range. 

These are triples of numbers (x , y , z )  such that x2 + y2 = z2 . We have: 

triads n = [(x , y ,  z) I x f- [1 . .  n] ; y f- [1 . .  n] ; z f- [1 . .  n] ; 
x � 2 + Y � 2 = z � 2] 

For example: 

? triads 5 
[(3 , 4 , 5 ) ,  (4, 3 , 5)] 

In the above definition of triads , we have not taken steps to ensure that 
each essentially distinct triad is printed only once. We can remedy this by 
defining: 

triads n [(x , y , z ) I x f- [l . .  n] ; y f- [x . .  n] ; z f- [y . .  n] ; 
x � 2 + y � 2 = z � 2] 

In the new definition, the value of y is restricted to the range x :::; y :::; n ,  
and the value of z to the range y :::; z :::; n. Since z must be at least as big 
as the larger of x and y, all triads will still be found. 
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Exercises 

3 . 2 . 1  Evaluate the expression: 

f:i I i - [1 , - 1 , 2, -2] j i > O J j - [l . . i] ]  

3 . 2 . 2  Under what conditions on xs and ys does the equation: 

[x I x - XSj Y - ys] = [x I y - YS j x - xs] 

hold? 

3 . 2 . 3  Using a list comprehension, define a function for counting the number 
of negative numbers in a list . 

3 . 2 .4 Define a function intpairs so that ( intpairs n) is a list of all distinct 
pairs of integers 1 � x , Y � n. 

3 . 2 . 5  Write a program to find all quadruples (a, b , c , d) in the range 0 < 
a, b , c , d � n such that a2 + b2 = c2 + � . 

3 . 2 . 6  Define xn using a list comprehension . 

3 . 2 . 7  Determine the value of (divisors 0 ) ,  where: 

divisors n = [d I d - [1 . .  n] j n mod d = 0] 

3 . 2 .8 Define a function mindivisor which returns the smallest divisor , greater 
than 1 ,  of a given positive integer . Using mindivisor , construct a function 
for testing whether a number is prime. 

3 . 2 .9 Define gcd to allow for zero arguments .  

3 . 2 .10  Show that if n has a divisor in the range 1 < d < n,  then it  has one 
in the range 1 < d � y'n. 

3 .3  Operations on lists 

We now introduce a number of useful functions and operations on lists. 

Concatenation.  Two lists can be concatenated together to form one longer 
list . This function is denoted by the binary operator * (pronounced ' con
catenate') . In a restricted character set , such as ASCII, the symbol * can 
be written as a double-plus sign + + .  

Here are two simple examples of concatenation : 
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? [1 , 2 , 3] * [4, 5] 
[1 , 2 , 3 , 4 , 5] 

? [1 , 2] * [ ]  * [1] 
[1 , 2 , 1] 

The type of * is given by: 

(*) : :  [0] -t [0] -t [0] 

LISTS 

Concatenation takes two lists, both of the same type, and produces a third 
list , again of the same type. Hence the above type assignment . 

Note that * is an associative operation and has identity element [ ] .  In 
other words , we have: 

(XS * ys) * zs = xs * (ys * zs) 
[ ]  * xs = xs * [ ]  = xs 

for all lists xs , ys and zs. 
Notice the names given to list variables . By convention, we shall use 

letters x ,  y, z , etc . ,  to denote elements of lists ,  and identifiers xs , ys , zs, etc . ,  
to denote lists themselves. We shall also sometimes extend the convention, 
writing xss , yss , zss , etc . ,  to denote lists whose elements are themselves lists .  

Concatenation performs the same function for lists as  the union operator 
U does for sets .  A companion function is concat which concatenates a list 
of lists into one long list .  This function, which corresponds to the big-union 
operator U for sets of sets ,  can be expressed using a list comprehension: 

For example: 

concat 
concat xss 

? concat [ [1 , 2] ,  [ ] ,  [3, 2, 1]] 
[1 , 2, 3 , 2 , 1] 

[[0]] -t [0] 
= [x I xs +- xsS ; x +- xs] 

? concat [ "We" , " " , "like" , " " , "lists ." ]  
We like lists . 

We shall give an alternative definition of concat in a later section. 

Length. The length of a finite list is the number of elements it contains. 
This operation is denoted by the prefix operator #. For example: 

? #[1 , 1 , 2 , 2 , 3 , 3] 
6 

? #[ ] 
o 
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The type of length is given by: 

(#) :: [a] -+ num 

The nature of the list elements is irrelevant when computing the length of a 
list ; hence the type assignment . 

A simple relationship between # and * is given by the equation : 

#(xs * ys) = #xs + #ys 

for all finite lists xs and ys . We also have the law: 

#[e I x +- xs] = #xs 

for all expressions e and lists xs . 

Head and tail. The function hd selects the first element of a list , and tl 
selects the remaining portion. Thus,  hd and tl satisfy the equations: 

hd ( [x] * xs) = x 
tl ( [x] * xs) = xs 

for all lists xs and elements x .  
Both functions are partial in that hd [ ]  = tl [ ]  = 1.. . The types of hd and 

tl are: 
hd : :  [a] -+ a 
tl : :  [aJ -+ [aJ 

A simple relationship between hd and tl is given by the equation: 

xs = [hd xsJ * tl xs 

for all non-empty lists xs . 

Init and last . The functions init and last are similar to hd and tl except 
that they break a list at the end rather than the beginning. We have: 

init (xs * [xl) = xs 
last (xs * [xD = x 

for all lists xs and elements x .  Both functions are partial in that the values 
of init [ J  and last [ J  are l... The functions init and last are related by the 
equation: 

xs = init xs * [ last xsJ 

for all non-empty lists xs . 

Take and drop. The functions take and drop each take a non-negative 
integer n and a list xs as arguments .  The value of ( take n xs) is the initial 
segment of xs of length n (or xs itself if #xs < n). For example: 
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? take 3 [1 . . 10] 
[1 , 2 , 3] 

? take 3 [1 . .  2] 
[ 1 , 2] 

The function drop can be specified by the equation 

take n X8 * drop n xs = X8 

LISTS 

The value of ( drop n :vs) is therefore the list which remains when the first n 
elements are removed. In particular, we have: 

take 0 xs [ ]  
drop 0 xs = xs 

We also have the laws : 
take m ·  drop n = drop n · take (m + n) 
drop m ·  drop n = drop (m + n) 

where m and n are arbitrary natural numbers . 
The functions tl and init satisfy the equations: 

for xs ::j:. [ ] . 

tl :vs = drop 1 xs 
init xs = take (#X8 - 1) xs 

Takewhile and dropwhile. The functions takewhile and dropwhile are 
similar to take and drop except that they both take a predicate as the first 
argument instead of a natural number.  The value of ( takewhile p xs ) is the 
longest initial segment of xs all of whose elements satisfy the predicate p . 
For example: 

? takewhile even [2, 4, 6 , 1 , 5 , 6] 
[2 , 4, 6] 

? takewhile even [1 . .  100] 
[ ]  

? takewhile (= 'a') "aardvark" 
aa 

The function dropwhile is similar, except that it 'drops' the longest initial seg
ment whose elements satisfy p . The type assigned to takewhile and dropwhile 
is :  

(a -+ bool) -+ [a] -+ [a] 

The first argument is a predicate (of type a -+ bool) , the second argument is 
a list of type [a] , and the result is another list of type [a] . 

Reverse. The function reverse reverses the order of elements in a finite list. 
For example: 
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? reverse "Richard Bird" 
driB drahciR 

? reverse "Madam, I'm Adam." 
.madA m'I ,madaM 

We can use reverse to define last in terms of hd , and init in terms of tl : 

last = hd · reverse 
init = reverse · tl . reverse 
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Zip . The function zip takes a pair of lists and returns a list of pairs of 
corresponding elements .  Its type is given by: 

zip :: ( [a] , [,8] ) -+ [(a , ,B)] 

For example: 

? zip ( [0 . .  4] , "hallo" ) 
[(0, 'h ') , ( 1 ,  'a ') , (2 , '1 ' ) ,  (3, '1' ) ,  (4, '0 ')] 

? zip ( [0 . .  1] , "hallo" ) 
[(0 , 'h ') , ( 1 ,  'a')] 

As the second example shows , if the two lists do not have the same length, 
then the length of the zipped list is the shorter of the lengths of the two 
arguments. 

The function zip has many uses . Here are some representative examples . 

1 .  Scalar product. The scalar product of two vectors x and y is defined by: 

The function sp , for computing scalar products ,  can be defined by: 

sp (xs , ys) = sum [x X y I (x , y) +- zip (xs , ys)] 

In this definition, sum is a function which sums the elements of a list of num
bers; we shall meet its definition presently. Notice the form of the generator 
in this list comprehension: a pair of values is drawn from a list of pairs . 

An alternative definition of the function sp is given by: 

sp = sum · zipwith (x) 

where zipwith is defined by: 

zipwith f (xs ,  ys) = [t x y I (x ,  y) +- zip (xs , ys)] 
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The second definition is shorter than the first , and zip with is a useful function 
in its own right , but either style is acceptable. 

2 . Non-decreasing sequences. Suppose we want to define a function nondec 
which determines whether a sequence [Xl ,  . . .  , xn] is in non-decreasing order . 
Informally, we have that nondec [Xl , X2 ,  . . .  , xn] is true whenever: 

This condition can be expressed as a list comprehension in the following way: 

nondec xs = and [x :::; y I (x , y)  t- zip (xs , tl xs )] 

The function and takes a list of boolean values and returns True if all of the 
elements of the list are True , and False otherwise. 

We would like to have nondec [ ]  = True.  The above definition gives: 

nondec [ ]  = and [x :::; y I (x ,  y) t- zip ( [ l , tl [ ] )] 
= and [x :::; y I (x , y )  t- zip ( [ l , J.. )] 

and it is not immediately clear what the value of this expression is . In fact , 
zip ( [ l , J.. ) = [ ] , so the above expression reduces to and [ ]  and thus to the 
required value True. This property of zip will be discussed in more detail 
when we come to the formal definition of zip in Chapter 5 .  

3 .  Position. Consider a function position such that (position xs x) returns 
the position of the first occurrence of X in xs (counting from 0) , and - 1  if X 

does not appear in xs . Thus position has type: 

position : :  [a] � a � num 

This is an instructive problem because the best way to tackle it is to solve a 
more general problem first : 

positions xs x = [i I ( i ,  y ) t- zip ( [0 . .  #xs - 1] , xs) ;  x = y] 

The function positions specifies all positions at which x appears in xs . We 
can now define position by: 

position xs x = hd (positions xs x * [- 1] )  

It turns out that the simplicity of this definition i s  achieved at no  increase 
in the cost of evaluation. In order to calculate the head of a list , it is not 
necessary to determine the value of every element of the list . These remarks 
will be amplified in Chapter 6 where the efficiency of computation is discussed 
in detail. 
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List indexing. A list can be indexed by a natural number n to find the 
value appearing at position n. This operation is denoted by the operator ( !) 
with type: 

For example: 

? [2 , 4 , 6 , 8] ! 2 
6 

? [2 , 4 , 6 , 8] ! 0 
2 

( ! )  : :  [a] -+ num -+ a 

Observe that the index of the first element of the list is position number O .  
For many applications this is a better choice than beginning at position 1 ,  
although there are occasions when base 1 indexing i s  simpler. 

We can define ( ! )  with the help of zip in the following way: 

xs ! n = hd [y I ( i , y)  +- zip ( [O . .  #xs - 1] , xs) j i = n] 

This is similar to the definition of position above. The number of steps 
required to find the nth element is proportional to n.  

The operator ( ! )  corresponds to the mathematical device of using sub
scripts to indicate a specified element of a list , and seems a very natural 
function. For example, we can use ( ! )  to give an alternative definition of the 
function nondec. A sequence of numbers Xo , Xl , . . .  , Xn-l is in non-decreasing 
order if X", ::; Xk+l for all k in the range 0 ::; k < n - 1 .  Hence we have: 

nondec xs = and [xs ! k ::; xs ! (k  + 1) I k +- [0 . .  #xs - 2]] 

As we have suggested, indexing a list is a fairly expensive operation in func
tional programming, taking about k steps to compute xs ! k , and should be 
avoided when there is a simple alternative. For example, the number of steps 
required to evaluate (nondec xs) according to the definition above is propor
tional to n2 , where n is the length of XS . Our earlier definition in terms of 
zip takes time proportional to n, and is therefore to be preferred. 

List-difference. The operator ( - - )  subtracts one list from another. It 
plays an analogous role for lists to that of set-difference for sets .  The informal 
description of (-- )  is that the value of (xs - - ys) is the list which results 
when, for each (not necessarily distinct) element y in ys , the first occurrence 
(if any) of y is removed from xs . For example: 

? [ 1 , 2 , 1 , 3 , 1 , 3] - - [1 , 3] 
[2, 1 , 1 , 3] 

? ( "angle" - - "1" ) * "1" 
angel 
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Concatenation and list-difference are related by the equation: 

(xs * ys) - - xs = ys 

for all finite lists xs and ys . 
We also have: 

tl xs = xs - - [hd xs] 
drop n xs = xs - - take n xs 

LISTS 

U sing list-difference, we can define the condition that one list is a permutation 
of another list : 

permutation xs ys = ( xs -- ys = [ ]) 1\ (ys - - xs = [ ] ) 

A list xs is a permutation of a list ys if, for all x ,  the number of occurrences 
of x in xs is the same as the number of occurrences of x in ys . The former 
number is no greater than the latter if xs - - ys = [ ] ,  and no smaller if 
ys - - xs = f l . Hence the definition. 

Exercises 

3 . 3 . 1  Express #[e I x +- xs ; y +- ys] in terms of #xs and #ys . 

3 . 3 . 2  Which of the following equations are true and which are false? 

[[ ] ]  * xs xs 
[[ ] ]  * xs [xs] 
[[ ] ]  * xs = [[ ] , xs] 

[ [ ] ]  * [xs] = [[ ] ,  xs] 
[xs] * [ ]  [xs] 

[xs] * [xs] = [xs , xs] 

3.3 .3  Give an informal characterisation of those finite lists xs and ys which 
satisfy: 

xs * ys = ys * xs 

3 . 3 .4 What is the value of [hd xs] * tl xs when xs = [ ] ?  

3.3 .5  Show, using an informal argument , that if p i s  the minimum of m and 
n,  then: 

take m . take n = take p 

3 . 3 .6 Verify or disprove the assertion that : 

(drop n xs) ! m = xs ! ( n + m) 

for all finite lists xs and natural numbers n and m .  
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3.3 .7  Is zip associative in the sense that : 

zip (xs ,  zip (ys ,  zs » = zip (zip (xs ,  ys) ,  zs ) 

for all xs , ys and zs? 
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3.3 .8 Using zip define the function zip4 which converts a 4-tuple of lists into 
a list of 4-tuples. 

3 . 3 .9 Define a function trips so that trips xs returns a list of all adjacent 
triples of elements of xs . 

3.3 .10  Suppose a list xs of integers contains an equal number of odd and even 
numbers . Define a function riffle so that ( riffle xs) is some rearrangement of 
xs in which odd and even numbers alternate . 

3 . 3 . 1 1 Find xs and ys such that : 

(xs * ys) - - ys ::J xs 

3 . 3 . 1 2  In a version of the game Mastermind, one player thinks of an n-digit 
number, while the other player repeatedly tries to guess it . After each guess ,  
player 1 scores the guess by stating the number of bulls and cows . A bull i s  
a correct digit in the correct place. A cow is  a digit appearing in the secret 
number, but not in the correct place. No digit is scored more than once. For 
example, if the secret code is 2113 ,  then: 

1234 scores 03 
1111  scores 20 
1212 scores 12 

Using ( - - ) , construct a function score which takes a code and a guess and 
returns the number of bulls and cows. 

3 . 4  Map and filter 

Two useful higher-order functions , closely related to list comprehensions , are 
map and filter . The function map applies a function to each element of a list . 
The type of map and its definition as a list comprehension are as follows :  

map . .  (a -+ 13) -+ [a] -+ [13] 
map f xs = [t x I x +- xs] 

For example, we have: 

? map square [9 , 3] 
[81 , 9] 

? sum (map square [1 . .  100) )  
338700 
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The use of map is nicely illustrated by the last example: the English phrase 
"the sum of the squares of the first 100 positive integers" is converted into a 
formal expression in a very simple and direct manner. One could also define: 

sigma l m n  = sum (map l [m . .  n] ) 
sumsquares = sigma square 1 100 

and so capture a common mathematical notation as a generic function sigma. 
There are a number of useful algebraic identities concerning map . For 

instance: 
map (J . g) = (map I) . (map g)  

This identity says that if  we apply 9 to every element of  a list , and then apply 
I to each element of the result , then the same effect is obtained by applying 
(J . g) to the original list . In other words , map distributes through functional 
composition. One consequence of the rule is that if I has an inverse /-1 , 
then: 

(map 1)-1 = map r1 

The proof is left as an exercise for the reader . 
Two further laws about map are: 

map I (xs * ys) = (map I xs) * (map I ys) 
map I . concat = concat . map (map I) 

The first law says that (mapl) distributes through concatenation. The second 
is a generalisation of the first : it says that applying I to each element of a 
concatenated list of lists is the same as applying (map I) to each component 
list and concatenating the results .  

Equalities such as the above are important for reasoning about the prop
erties of functions. We shall see how to prove them in Chapter 5 .  

Filter. The second function filter takes a predicate p and a list xs and 
returns the sublist of xs whose elements satisfy p. Like map it can be defined 
by a list comprehension: 

filter 
filter p xs 

For example, we have: 

? filter even [ 1 , 2 , 4 , 5 , 32] 
[2 , 4, 32] 

(0 -+ bool) -+ [0] -+ [0] 
= [x I x - XS j  P x] 

? (sum · map square · filter even) [1 . .  10] 
220 
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Observe in the last example how the phrase "the sums of the squares of 
the even numbers in the range 1 to 10" is translated directly into a formal 
expression in our programming notation. Observe also that the type of filter 
is the same as takewhile and dropwhile , two of the functions we introduced 
in a previous section. 

Like map , there are a number of useful identities concerning filter. We 
have, in particular, that : 

filter p (xs * ys) = 
filter p . concat = 
filter p . filter q 

filter p xs * filter p ys 
concat . map (filter p) 
filter q . filter p 

The first law says that filter distributes through concatenation. The second 
law generalises this distributive property to lists of lists. Finally, the third 
law says that filters can be applied in any order. The third law is only valid 
if p x t- .1 and q x t- .1 for x t- .i .  

Translating comprehensions . There i s  a close relationship between the 
functions map and filter and the notation of list comprehensions . We have 
defined map and filter in terms of list comprehensions , but it is also possible 
to go in the other direction and translate list comprehensions into combina
tions of map , filter and the function concat (which was also defined earlier 
as a comprehension) . There are just four basic rules for carrying out the 
conversion: 

( 1 )  
(2) 
(3) 
(4) 

[x l x +- xs] 
[j x I x +- xs] 
[e I x +- XSj P X j  • • •  J 
[e I x +- XS j Y +- YS j • • •  ] 

= xs 
= map ! xs 

[e I x +- filter p XS j • • •  ] 
concat [ [e I y +- YS j • •  '] 1 x +- xs] 

This set of rules is sufficient to translate any comprehension provided it 
begins with a generator . Note that Rule ( 1 )  is a special case of Rule (2) ,  
namely when ! = id . In order to apply Rules (2) and (3) it may be necessary 
to introduce subsidiary functions . For example, in order to translate the 
comprehension: 

[1 I x +- xs] 

it is necessary to introduce a function const, defined by: 

Now we have: 

const k x = k 

[1 1 x +- xs] = [const 1 x I x +- xs] ( const. l )  
= map ( const 1 )  xs (Rule 2)  

Similarly, in order to translate: 

[x I x +- XS j x = min xs] 
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we introduce the function: 

minof xs x = ( x  = min xs) 

Now we can write: 

[x I x +- xs j x = min xs] 
Ix I x +- xs ; minof xs x] 
[x I x +- filter (minof xs) xs] 
filter (minof xs) xs 

(minof · 1 )  
(Rule 3 )  
(Rule 1 )  

Here are three further examples of translating comprehensions : 

(a) We have: 

(b) We have: 

(c) We have: 

[x X x I x +- xs ; even x] 
[x X x I x +- filter even xs] 
[square x I x +- filter even xs] 

= map square (filter even xs) 

[x I xs +- XSS j x +- xs] 
= concat [[x I x +- xs] 1 xs +- xss] 

concat [xs I xs +- xss] 
concat xss 

(Rule 3) 
(square) 
(Rule 2) 

(Rule 4) 
(Rule 1 )  
(Rule 1 )  

[ (  i , j ) I i +- [1 . .  n] ; j +- [i + 1 . .  nll 
concat [ [( i , j ) I j +- [i + 1 . . nll l i +- [1 . . nll 
concat [map (pair i )  [i + 1 . .  n] 1 i +- [1 . .  nll 
concat (map mpair [1 . .  n] ) 

Here we have used the definitions : 

pair i j 
mpair i 

( i , j ) 
map (pair i )  [i + 1 . . n] 

(Rule 4) 
(Rule 2) 
(Rule 2) 

LISTS 

The choice as to whether to write a program using concat, map and 
filter, or to use comprehensions , is a matter of style. Sometimes one is 
more clear, sometimes the other and sometimes both are equally good (or 
bad) . One advantage of the higher-order functions is that it is easier to 
state algebraic properties and use these properties in the manipulation of 
expressions . On the other hand, list comprehensions are clear and simple 
to understand. Moreover, there is no need to invent special names for the 
subsidiary functions which arise when map and filter are used. 
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Exercises 

3.4.1  The function filter can be defined in terms of concat and map :  

filter p = concat · map box 
where box x = . . .  

Give the definition of box . 

3.4.2 What is the type of (map map)? 
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3 .4.3 Using the rules given in Section 3 .4, convert the following expressions 
into combinations of map,  filter and concat : 

[x I xs +- XSS ; x +- Xs ;  odd x] 
[(x , y)  I x +- XS ;  p x; y +- ys] 

3 .4.4 Consider the following two expressions : 

[(x ,  y) I x +- XS ;  P x ;  Y +- ys] 
[(x , y)  I x +- XS ;  y +- ys ; p x] 

Are they equivalent? Supposing #xs = 1000, #(filter p xs) = 10  and #ys = 

100, compare the costs of evaluating the two expressions . What conclusions 
do you draw? 

3 .5  The fold operators 

Most of the operations we have seen so far return lists as results. The fold 
operators are more general in that they can convert lists into other kinds of 
value as well. The fold operators come in two flavours ,  foldr and foldl . We 
will begin by considering foldr . Its informal definition is as follows :  

foldr f a  [XI , X2 , . . .  , Xn] = f Xl (f X2 ( . . .  (f  Xn a) · ·  . ))  

An equivalent formulation, possibly easier to read, is :  

foldr (Ell ) a [Xl , X2 , . . .  , Xn] = Xl Ell (X2 Ell ( . . .  (xn Ell a)  . . .  ) )  

Here (Ell ) ,  like f ,  i s  just a variable that is bound to a function of two argu
ments .  The equivalence of the two definitions can be seen by recalling that 
x Ell y is equivalent to (Ell ) x y . 

In particular, we have: 

foldr ( Ell ) a [ ]  = 

foldr (Ell ) a [Xl ] 
foldr (Ell ) a [XI , X2] = 

Joldr (Ell ) a [XI , X2 , X3] = 

a 
Xl Ell a 
Xl Ell ( X2 Ell a)  
Xl Ell (X2 Ell (X3 Ell a) )  
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and so on . The brackets always group to the right ; this explains the name 
foldr , which stands for 'fold right ' .  

From the informal definition we can infer that the second argument of EB 
must have the same type as the result of EB ,  but that , in general, the first 
argument may have a different type. Thus, the most general type for foldr 
is :  

foldr : :  (a - (3 - (3) - (3 - [aJ - (3 

Often a and (3 will be instantiated to the same type; this will happen, for 
example, if EB denotes an associative operation. 

Using foldr we can define: 

sum = foldr (+) 0 
product = foldr (x) 1 
concat = foldr (*) [ J  
and = foldr (1\) True 
or = foldr (V) False 

The function sum adds the elements of a list of numbers, while product 
multiplies them. We have met concat in Section 3 .3 where it was defined by 
a list comprehension. The functions and and or both take a list of booleans 
as argument : and returns True if every element of the list equals 7rue, while 
or returns True if at least one element of the list equals True. We have 
already met and in a previous section . 

All of the above examples share an important property: in the expression 
(Joldr (EB)  a) the function EB is associative and has identity element a. In 
other words , we have for all x ,  y, and z that : 

x EB (y  EB z) = (x  EB y) EB z 
x EB a = x = a EB x  

We will abbreviate this by saying that EB and a form a monoid . The reader 
should verify that each of the five definitions above has this property. If E9 
and a form a monoid, then: 

foldr (EB)  a [ J  
foldr (EB)  a [xt , :I:2 , . . .  , xnJ = 

because the disposition of brackets has no effect on meaning. 
Here are some examples where the arguments to foldr do not form a 

monoid. First , consider: 

( #) = foldr oneplus 0 
where oneplus x n = 1 + n 

This defines the length of a list by counting one for each element . Note that 
oneplus ignores its first argument . The type of oneplus is :  

oneplus : :  a _ num _ num 
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and so i t  cannot be associative. 
Second, here are two examples of definitions of functions which we have 

already met informally: 

reverse = foldr postfix [ ]  
where postfix x xs = zs * [x] 

takewhile p = foldr (EB) [ ]  
where x EB xs = [x] * xs , if p x 

= [ ] ,  otherwise 

The first function reverses a list [Xl , Z2, . . .  , z..] by appending z.. , z..-l . . . .  , Xl 
in succession to the end of an initially empty list . To check the definition of 
takewhile p ,  consider the expression takewhile « 3) [1 . .  4] . We have: 

as required. 

takewhile « 3) [1 . . 4] = 1 EB (2 EB (3 EB (4 EB [ ] )) )  
= [1] * ( [2] * ( [ ] ) )  
= [1 , 2] 

Fold left . We now consider foldl ,  the other flavour of the fold operator . 
Informally, it is defined by: 

foldl (EB) a [X1 , Z2 , . . .  , z..] = ( . .  · «a EB Xl ) EB Z2) . . .  ) EB z.. 
In particular, we have: 

foldl (EB) a [ ]  = a 
foldl (EB) a [Xl] = a EB Xl 

foldl (EB) a [Xl .  Z2] = ( a EB Xl ) EB Z2 
foldl (EB) a [X1 ' � ' X3] = «a EB Xl ) EB Z2) EB X3 

and so on. Here the brackets group to the left , so foldl stands for "fold left" . 
The type of foldl is :  

foldl : :  ({3 -+ 0: -+ (3) -+ {3 -+ [0:] -+ {3 

This is almost identical to the type of foldr , except that in foldr the first 
argument has type (0: -+ (3 -+ (3) .  When EB is associative, both 0: and {3 are 
instantiated to the same type, and so foldr and foldl have the same type in 
such a case. 

Clearly, foldr and foldl are closely related functions differing only in the 
way the operations are grouped. One example of the use of foldl is given by: 

pack zs = foldl ( EB) 0 zs 
where n EB X = 10 X n + X 

This codes a sequence of digits as a single number, assuming the most sig
nificant digit comes first . Thus we have: 

n-1 
pack [xn-l . Xn-2 , • • •  , xo] = L: Xk10k 

k=O 
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3.5.1 Laws 

There are a number of important laws concerning foldr and foldl .  The first 
three are called duality theorems. 

The first duality theorem states that : 

foldr ( tfJ)  a xs = foldl (tfJ ) a xs 

whenever tfJ and a form a monoid and xs is a finite list . Thus , foldr and 
foldl define the same function over monoids. However, as we shall see in 
Chapter 6, it is sometimes more efficient to define a function using foldr and 
sometimes more efficient to use foldl .  For example, we could have defined 
sum and product using foldl instead of foldr , and we shall see that using foldl 
is indeed more efficient . On the other hand, we shall also see that concat , 
and , and or are better defined using foldr. 

The second duality theorem is a generalisation of the first . Suppose tfJ and @ 
and a are such that for all x ,  y ,  and z we have: 

x tfJ (y  @ z) = (x  tfJ y) @ z 
x tfJ a = a @ x  

In other words , EEl and @ associate with each other, and a on the right of EEl 
is equivalent to a on the left of @. Under these conditions we have: 

foldr ( tfJ) a xs = foldl (@) a xs 

for any finite list xs . 
The second duality theorem has the first duality theorem as a special 

case, namely when (tfJ) = (@) .  
To illustrate the second duality theorem, here are the definitions of (#) 

and reverse in terms of foldl :  

(#) foldl plusone 0 
where plusone n x = n + 1 

reverse foldl prefix [ l 
where prefix xs x = [xl * xs 

It follows from the second duality theorem that these definitions are equiv
alent to the previous ones that used foldr . Later on, we shall see that these 
new definitions are in fact more efficient . The reader should verify that 
oneplus , plusone and 0 meet the conditions of the second duality theorem, 
as do postfix , prefix , and [ J . 

The third duality theorem states that :  

foldr (tfJ) a xs = foldl (iD) a (reverse xs) 
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for any finite list xs , where ffi is defined by: 

so that ffi is EB with the arguments reversed. 
For example, reversing the arguments of prefix gives a function cons de

fined by: 
cons x xs = [x] * xs 

Moreover, we have that : 

X8 = foldr cons [ ]  X8 

for all lists xs . Now, from the third duality theorem we have: 

foldr cons [ ]  xs = foldl prefix [ 1  (reverse xs) 

and so: 
xs = reverse (reverse xs) 

for any finite list xs , just as we would expect . 

There are many other useful identities concerning foldr and foldl . For exam
ple, if EB and a form a monoid,  then: 

foldr ( EB) a (xs * ys) = (foldr (EB ) a xs) EB (foldr ( EB) a ys) 

for all lists xs and ys . A similar identity holds for foldl . 
We also have, for arbitrary f and a, that : 

foldl f a (xs * ys) 
foldr f a  (xs * ys) 

for all lists xs and ys . 

foldl f (foldl f a xs ) ys 
= foldr f (foldr f a ys )  xs 

3.5.2 Fold over non-empty lists 

Say we wish to find the maximum element of a list .  We would like to do this 
by defining: 

max = foldl (max) a 

where (max) is a binary operator that returns the greater of its two ar
guments .  But what should we choose as the value of a? Since (max) is 
associative, we would have a monoid if a were chosen to be the identity 
element for (max); that is : 

x max a = x = a max x 
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for all X .  If we know that the list contains only non-negative numbers , then 
choosing a to be 0 gives the desired property, and we can define: 

maxnaturals = Joldl (max) 0 

Unfortunately there is no value of a with the desired property in the general 
case of arbitrary numbers. 

We will solve this problem by introducing two new functions Joldl1 and 
Joldr1 which are variants of foldl and Joldr . Informally, Joldl1 and Joldr1 are 
defined by: 

Joldll (EB) [Xl , X:/ , . . .  , Xnl = ( . . .  ( (Xl EB X2 ) EB X3) · · · ) EB Xn 
Joldr1 (EB) [Xl , X2 , . . .  , xnl = (Xl EB (X2 EB · · ·  (Xn-l EB Xn ) · ·  . ) )  

In particular, we have: 

Joldl1 (EB ) [Xl ] = Xl 
Joldll (EB) [Xl , X2] = Xl EB X:/ 

Joldl1 (EB) [XI , X:/ , X3] = (XI EB X:/) EB X3 

and so on. The difference between Joldl1 and Joldrl is only apparent for lists 
of length 3 or more. We have : 

in which the brackets group the other way. Both functions are undefined on 
the empty list . The type of Joldll and foldrl is :  

foldll , foldrl : :  (a -t a -t a) -t [a] -t a 

The reader should compare this with the types of Joldl and Joldr ; here, there 
is only one type variable (a) instead of two (a and f3) .  

Now we can solve our problem by defining: 

max = foldl1 (max) 

We could, of course, have used foldrl instead. Further, it is easy to define 
foldll in terms of foldl : 

Joldll (EB) xs = foldl (EB) (hd xs) ( tl xs) 

The definition of Joldrl is left as an exercise for the reader. 

3.5 .3  Scan 

Sometimes it is convenient to apply a fold left operation to every initial 
segment of a list . This is done by the function scan, which can be defined 
informally in the following way: 
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In particular : 

scan (ED)  a [XI , X2 ,  X3] 
= [a ,  ( a  ED Xl ) , « a ED Xl ) ED X2) ,  « ( a ED Xl ) ED X2) ED X3)] 

It follows that the last element of the list ( scan (ED) a xs) is just the value of 
(foldl (ED) a xs) .  Hence: 

foldl (ED) a = last . scan ( ED)  a 

Notice that each element in a scan can be computed in terms of the preceding 
element using just one extra ED operation . More precisely, if X ED y can be 
computed in a constant number of steps, and the list xs has length n, then 
(scan (ED) a xs) can be computed in a number of steps proportional to n.  

For example, scan can be used to compute running sums or  running 
products: 

scan ( + ) 0 [1 , 2 , 3 , 4 , 5] = [0, 1 , 3 , 6 , 10 , 15] 
scan ( x )  1 [1 , 2 , 3 , 4 , 5] = [1 , 1 , 2 , 6 , 24 , 120] 

The last expression is equal to map fact [0 . .  5] , where: 

fact n = product [1 . .  n] 

is a definition of the factorial function. However, this second definition of 
the list of factorial numbers is less efficient since each term is computed 
independently. In fact , (map fact [0 . .  nD requires about n2 multiplications. 

As a related example, we have: 

scan (f) 1 [1 . .  n] = [I/O ! ,  1/1 ! ,  . . .  , l/n!] 

where n! is the conventional notation for (fact n) .  

Exercises 

3 . 5 . 1  Consider the function all which takes a predicate p and a list xs and 
returns True if all elements of xs satisfy p, and False otherwise. Give a 
formal definition of all which uses foldr . 

3 . 5 .2 Which, if any, of the following equations are true? 

foldl ( - ) X xs = X - sum xs 
foldr ( - ) X xs = X - sum xs 

3 . 5 .3 Verify the equation: 

foldl (ED) a (xs * ys) = foldl (ED) (foldl (ED) a xs) ys 

Using the fact that : 

reverse (xs * ys) = reverse ys * reverse xs 

and one of the duality laws , derive a similar equation for foldr (ED) a (xs * ys) .  
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3 . 5 .4 Consider the following definition of a function insert : 

insert x xs = takewhile (� x)  xs * [x] * dropwhile (� x )  xs 

Show that if xs is a list in non-decreasing order, then so is ( insert x xs ) .  Using 
insert , define a function isort for sorting a list into non-decreasing order . 

3 . 5 . 5  The function remdups removes adjacent duplicates from a list . For ex
ample , remdups [1 , 2 , 2 , 3 , 3 , 3 , 1 , 1] = [1 , 2 , 3 , 1] . Define remdups using either 
foldl or foldr . 

3 . 5 .6 Given a list xs = [x1 , :&2 , . . .  , Xn] of numbers , the sequence of successive 
maxima (ssm xs ) is the longest subsequence [xil ' Xi2 ' . . .  , xim] such that jl = 1 
and xi < xile for j < ik ' For example, the sequence of successive maxima of 
[3, 1 , 3 , 4 , 9 , 2 , 10 , 7] is [3, 4, 9, 10] . Define ssm in terms of foldl . 

3 . 5 . 7  The following law relates foldl and map: 

foldl (E9 ) a . map f = foldl (0) a 

where x 0 y = x E9 f y .  Derive this law from the corresponding law relating 
foldr and map, using the fact that :  

map f . reverse = reverse · map f 

and one of the duality theorems. 

3 . 5 .8 Define the functions foldr1 and scan1 that relate to foldr and scan 
analogously to the way that foldl1 relates to foldl .  

3 . 5 .9 The mathematical constant e i s  defined by: 

e =  L: � 
n�O n! 

Write down an expression that can be used to evaluate e to some reasonable 
measure of accuracy. 

3 . 6  List patterns 

When introducing the basic types of the previous chapter we showed how to 
define functions by pattern matching. Pattern matching with list arguments 
is also possible . To explain how it works it is necessary to introduce one final 
operator which plays a special role with lists .  The operator is denoted by the 
sign ( : ) (pronounced 'cons') and inserts a value as a new first element of a 
list .  (In fact, ( : )  has already appeared in Section 3 .5 .1  with the name cons .) 
The type of ( :) is given by: 

( : )  :: 0 � [0] � [0] 

For example, we have: 
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? 1 : [ )  
[1) 

? 1 : 2 : [3 , 4J 
[1 , 2 , 3 , 4) 

? 'h' : 'e '  : '1' : 'l '  : '0 ' : [ )  
hello 
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By convention, ( :) associates to the right , so 1 :  2 :  [3 , 4] means 1 :  (2 : [3 , 4] ) .  
Every list can be constructed by  inserting its elements one by  one into the 

empty list (hence the reason for the name 'cons' ,  which is an abbreviation 
for the word 'construct ') . In fact , we can regard an enumerated list : 

as shorthand for the expression : 

Xl : X2 : • • •  : Xn : [ ] 

Cons is related to concatenation in that we have: 

x : xs = [x) * xs 

for all x and xs . 
One important distinction between (*) and ( : )  is that every list can be 

expressed in terms of [ )  and ( : )  in exactly one way. This is not true for 
concatenation because it is an associative operation. For example , the list 
[1 , 2, 3) can be expressed as [1) * [2 , 3) ,  or as [1 , 2) * [3) .  This special property 
of ( : )  means we can do pattern matching with [ )  and ( : ) .  For example, we 
can define hd and tl formally by the equations: 

hd (x : xs )  = X 
tl ( x : xs) xs 

Similarly, we can define a test null for determining whether a list is empty 
by: 

null [ )  = True 
null (x : xs) = False 

Finally, we can define a function single for determining whether a list contains 
a single element by the equations : 

single [ )  
single [x) 

= False 
= 

single (x : y : xs) = 
True 
False 

Here, the pattern [x) is used as an abbreviation for x : [ ) .  Note that the 
three cases described by the above patterns are exhaustive and disjoint . An 
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arbitrary list is either empty, in which case it matches the pattern [ ] ,  or it 
is a singleton list , in which case it matches the pattern x : [ ] ,  or it is of the 
form x : y : xs. 

Further examples of definition by list patterns will be given in the next 
two chapters . 

Exercises 

3 . 6 . 1  In how many ways can [1 . .  n] be expressed as the concatenation of 
two non-empty lists? 

3.6 .2  Which of the following equations are true? 

[ ]  : xs 
[ ]  : xs 
xs : [ ]  
xs : [ ]  = 
x : y  

(x : xs) * ys 

xs 
[ [ ] ,  xs] 
xs 
[xs] 
[x ,  y] 
x :  (xs * ys) 

3.6 .3  Using pattern matching with ( : ) , define a function rev2 that reverses 
all lists of length 2 , but leaves others unchanged. Ensure that the patterns 
are exhaustive and disjoint . 

3 . 6 .4 Consider the function insert of Exercise 3 .5 .4. Another way to define 
insert is in terms of a function swap: 

insert x = foldr swap [x] 

The function ( swap x ) applied to a non-empty list xs adds x as either the 
first or second element . Using pattern matching, give a definition of swap . 
Estimate the cost of sorting by this method. 
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Examples 

The examples of list processing dealt with i n  the present chapter come from 
a variety of sources and cover both numeric and symbolic applications . In 
particular, we shall build a simple package for doing arithmetic with arbitrary 
precision integers, design some useful functions for handling text , and show 
how to construct pictures of different kinds . Each application is accompanied 
by a number of exercises in which the reader is invited to check relationships, 
explore possible extensions and suggest improvements .  

We begin with a simple problem, involving both numeric and symbolic 
aspects ,  in which the operation of list indexing plays a central role . 

4 . 1  Converting numbers to words 

Sometimes we need to write numbers in words .  For instance, to fill out 
a cheque or cash transfer correctly, not only must the amount appear in 
figures , it must also be written in words . Suppose, for simplicity, that the 
given number is an integer greater than zero but less than one million. We 
want to design a function convert so that , provided n is in the stated range, 
the value of (convert n) is the list of characters corresponding to the usual 
English formulation of the whole number n. 

The informal specification above assumes we know exactly what 'the usual 
English formulation' of a number is. In fact , different rules and conventions 
are adopted in different places . The rules we shall follow are illustrated by 
the following examples : 

? convert 308000 
three hundred and eight thousand 

? convert 369027 
three hundred and sixty-nine thousand and twenty-seven 

? convert 369401 
three hundred and sixty-nine thousand four hundred and one 
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Notice the dash in the phrases "twenty-seven" and "sixty-nine" , and the 
connecting word "and" which appears : (i) after the word "hundred" if the 
tens part is non-zero; and (ii) after the word "thousand" if the hundreds part 
is zero (but the tens part is not ) .  

A good way to tackle such problems is to consider a simpler problem 
first . There is ,  of course,  no guarantee that solutions obtained for simpler 
problems can be used directly in the problem which inspired them; they may 
only serve to familiarise the solver with some of the features and difficulties 
involved. Even so, the work is not wasted; familiarity with a problem is one 
of our most important tools for solving it . And often we will be able to use 
the solution directly or by adapting it . 

An obvious place to begin is to suppose that the number n belongs to a 
smaller interval, say 0 < n < 100 . In this case n has one or two digits .  These 
digits are going to be needed, so we start with the definition: 

convert2 n 
digits2 n 

= combine2 ( digits2 n) 
= (n div 10 , n mod 10) 

In order to define the function combine2 , we shall need the English names 
for the simplest numbers . These can be given as lists of strings : 

'Units 

teens 

tens 

= ["one" "two" "three" "four" "five" , , , , , 
"six" "seven" "eight" "nine"] , , , 

= [ "ten" "eleven" "twelve" "thirteen" "fourteen" , , , , , 
"fifteen" "sixteen" "seventeen" "eighteen" "nineteen"] , , , , 

= ["twenty" , "thirty" , "forty" , "fifty" , 
"sixty" , "seventy" ,  "eighty" , "ninety"] 

The definition of combine2 uses these lists by indexing into them at the 
appropriate places . The definition is as follows:  

combine2 (0 ,  'U + 1 )  
combine2 ( 1 ,  'U)  

= 'Units ! 'U 
= teens ! 'U 
= tens ! t  combine2 ( t  + 2, 0)  

combine2 ( t  + 2 ,  'U + 1 )  = tens ! t * "-" * 'Units ! 'U 

Recall that list indexing with the operator ( ! )  begins at 0 ,  not 1 .  The pat
terns on the left are mutually disjoint , so the order of the equations is not 
important . However, no value is specified for the pattern (0 , 0 ) .  

The case 0 < n < 100  yielded easily enough, so now let us  try the range 
o < n < 1000 when n can have up to three digits .  Taking account of the 
structure of our first solution, we begin with: 

convert3 n 
digits3 n 

= combine3 ( digits3 n) 
= (n div 100, n mod 100) 
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Here, (digits3 n) returns a pair (h, t ) where h is the hundreds part of n (so 
o ::; h < 10) ,  and t the part less than 100 . For example, digits3 (427) = 
(4, 27) . We can now define: 

combine3 (0, t + 1 )  
combine3 (h + 1 , 0) 
combine3 (h + 1 ,  t + 1)  

= convert2 ( t + 1 )  
= units ! h * "uhundred" 
= units ! h * "uhundred andu" 

* convert2 ( t + 1 )  

This step is the crucial one as  far as the design of the overall algorithm is  
concerned. We split n into digits in  two stages: first into a hundreds part 
h and a part t less than a hundred; and then, in the definition of convert2 , 
split t into a tens part and a part less than ten. 

Now we are ready to tackle the next and final step in which n lies in the 
range 0 < n < 1000000 and so can have up to 6 digits. In a similar spirit to 
before, we split n into two numbers m and h, where m is the thousands part 
and h is the part less than a thousand. We can therefore write: 

convert6 n 
digits6 n 

= combine6 (digits6 n) 
(n div 1000 , n mod 1000) 

There will be a connecting "and" between the words for m and h only in the 
case that m > 0 1\ 0  < h < 100 . The function combine6 can thus be defined 
in the following way: 

combine6 (O , h + 1 )  
combine6 (m + 1 , 0)  
combine6 (m + 1 ,  h + 1)  

= convert3 (h  + 1 )  
= convert3 (m + 1 )  * "uthousand" 
= convert3 (m + 1 )  * "uthousand" 

*link (h + 1) * convert3 (h + 1) 

The subsidiary function link is defined by: 

link h "uandu" , if h < 100 
= "u" , otherwise 

The required function convert is just the function convert6 ,  so we are done. 
As well as being a good illustration of the use of (*) and ( ! ) ,  this exam

ple also demonstrates the advantages of pattern matching over conditional 
equations .  Each case is expressed dearly and concisely, and it is easier to 
check that all cases are covered. 

Exercises 

4 . 1 . 1  Modify the solution so that a full-stop character is printed after a 
number. 

4 . 1 . 2  Generalise the solution to handle positive numbers up to one billion. 
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4 . 1 .3 Show how the solution can be adapted to handle negative numbers . 

4 . 1 .4 Write a similar program to convert a whole number of pence into 
words . For example, the number 3649 should convert to "thirty-six pounds 
and forty-nine pence" . 

4 . 1 . 5  As a more difficult exercise, write a program which will do the inverse 
of convert . In other words, the input is the English formulation of a number 
and the output is the corresponding decimal representation . 

4 . 2  Variable-length arithmetic 

We saw in Chapter 2 that the built-in operations of arithmetic can only 
handle integers in some restricted range. For numbers outside this range the 
operations are not well-defined. One way round the problem is to construct 
our own package of functions for computing with integers of arbitrary size. In 
this section we shall define the basic arithmetic operations for variable-length 
integers . 

As a first step we consider only non-negative integers. A non-negative 
integer x can be represented as a non-empty list of 'digits '  in some given 
base b . To avoid ambiguity, these digits will be referred to as 'bigits' (short 
for ' b-digits ' ) .  Each bigit x will lie in the range: 

O :$ x < b  

where the value of b is yet to be determined .  It is useful to introduce the 
type synonyms: 

vint = =  [bigit] 
bigit == num 

Thus , an element of vint (a variable-length integer) is a sequence of bigit 
values, where a bigit is an element of num. 

We shall suppose that numbers are represented with the most significant 
bigit first . This representation is the one used with ordinary decimals and, 
in the absence of a good reason to the contrary, is the sensible one to adopt 
for our arithmetic package. Thus, an integer x is represented by a sequence 
[Xn-l , Xn-2 , . • •  xo] ,  where: 

n-l  
X = L Xkbk 

k=o 
The major criterion which influences the choice of base is that we require: 

b � 2 :$ maxint 

where maxint denotes the maximum integer that can be handled by the built
in operations. This condition ensures that 'bigit-by-bigit ' multiplications can 



4.2 VARIABLE-LENGTH ARITHMETIC 79 

be performed by the built-in operation ( x )  of multiplication without danger 
of going out of range. For concreteness ,  if we take: 

b = 10000 

then it is assumed that all numbers up to 108 lie within the permitted range of 
the primitive operations . To illustrate this particular choice of b, the number 
123456789 can be represented by the list [1 , 2345 , 6789] ' and 100020003 can be 
represented by [1 , 2 , 3] .  The number 0 can be represented by the list [0] . These 
representations are not unique since an arbitrary number of leading zeros can 
be added to an integer without changing its value. We can 'standardize' a 
representation by applying the function strep to remove non-significant zeros . 
The definition is :  

strep xs = [OJ , if ys = [ ]  
ys , otherwise 
where ys = dropwhile (= 0) xs 

The definition of strep ensures that 0 will have the standard representation 
[0] . 

4.2 .1  Comparison operations 

Thanks to our choice of representation, which has the most significant bigit 
first , the comparison operations on vint can be based on the primitive lex
icographic ordering on lists .  We have, of course, to align the two numbers 
before performing the comparison, so we define: 

align xs ys = (copy 0 n * xs , ys ) , if n > 0 
= (xs , copy 0 (-n) * ys) , otherwise 

where n = #ys - #xs 

The function copy can be defined by: 

If we now define: 

copy x n = [x I j +- [1 . .  nl J 

vcompare op xs ys = op us vs where (us , vs) = align xs ys 

then we have: 

and so on. 

veq = vcompare (= ) 
vleq = vcompare (:s;)  
vless = vcompare ( <)  
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4.2 .2  Addition and subtraction 

The functions vadd and vsub for doing variable-length addition and subtrac
tion are easily defined. We align the two numbers , do the operation bigit 
by bigit , and then 'normalise' the result . Normalisation involves reducing 
the result of each operation to a bigit in the required range. For example, 
suppose we want to add the numbers : 

[7, 3 , 7] 
[4, 6, 9] 

where we suppose that b = 10. The bigit-by-bigit addition of these numbers 
is :  

[1 1 , 9, 16] 

and the normalised result , namely: 

[1 , 2 , 0 , 6] 

is obtained by reducing each bigit modulo b after adding in the carry from 
the previous normalisation step . More precisely, suppose we define: 

carry bigit -t [ bigit] -t [ bigit] 
carry x (c : xs) = (x + c) div b : (x + c) mod b : xs 

The carry bigit c at each step of the normalisation process is the leading 
element of the list of bigits being normalised . Now, to normalise the list 
[Xl , X2, . • •  , xn ] , we compute: 

carry Xl ( carry X2 • • •  ( carry Xn [0) ) )  

and then convert the result to standard form. The term [0] ensures that the 
process is started with an initial carry of O. The expression above is just : 

foldr carry [0] [Xl , X2 , • • •  , Xn] 

so we can define the normalisation function norm by: 

norm = strep · foldr carry [0] 

The addition and subtraction operations can now be defined by the equa
tions: 

vadd xs ys 
vsub xs ys 

= norm (zipwith ( + ) ( align xs ys) )  
= norm (zipwith (- ) (align xs ys)) 

The interesting point about the function vsub is what happens when the 
second argument is greater than the first , so the answer is a negative number. 
For example, again supposing b = 10 ,  we have: 
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? vsub [1 , 0 , 6] [3 , 7, 5] 
[- 1 , 7, 3 , 1] 
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A negative result is indicated. by a leading bigit of -1 .  The remaining 
bigits represent the value of the number in what is known as 'complement' 
form. Subtracting [3 , 7, 5] from [1 , 0 , 6] yields first the unnormalised value 
[-2, -7, 1] and then the normalised result [- 1 , 7, 3, 1] . This list of digits rep
resents the number 106 - 375 = -269. The absolute value of a negative 
number can be obtained by negating all the bigits in the representation (in
cluding the 'sign' bigit -1)  and normalising. So, negating and normalising 
[- 1 , 7, 3 , 1] gives [2 , 6 , 9] .  It follows that we can define the predicate negative , 
which tests whether the result of subtraction is negative, and the function 
negate for negating a number by: 

negative xs = (hd xs < 0) 
negate = norm · map neg 
neg x -x 

The behaviour of vsub suggests one possible representation for negative in
tegers, namely signed-complement notation. In signed-complement notation, 
there is a leading sign-bigit of - 1  for negative numbers and the remaining 
digits are in complement form. As we have seen, signed-complement repre
sentation is convenient for addition and subtraction since no special measures 
have to be taken for negative arguments and results .  Another possible repre
sentation is the one normally used with decimal calculations done by hand. 
This is called signed-magnitude notation. Here, a number is denoted by its 
absolute value, together with an indication of whether the number is positive 
or negative. 

4.2.3 Multiplication 

Next , we need to define the function vmul which multiplies two variable
length integers . The most straightforward definition is a translation of the 
school book method,  whereby the multiplicand xs is multiplied by each bigit 
y of the multiplier ys and the partial sums are added together, shifting ap
propriately. The list of partial sums, in decreasing order of significance, is 
given by (psums xs ys) ,  where: 

psums xs ys 
bmul xs y 

= map ( bmul xs) ys 
= norm (map ( x y) xs) 

To do the shifting and adding, let EB be defined by: 

xs EB ys = vadd (xs * [0] ) ys 

The operator EB shifts xs by appending a zero on the right , and then adds 
the result to ys with the function vadd. 
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If the list of partial sums is [PS1 , PS2 ' . . .  , psn] , then its sum is : 

« (PSl EB PS2) EB PS3) EB • • • EB PSn) 

This pattern of computation can be expressed with the function foldl1 of the 
previous chapter. Hence we can define: 

vmul xs ys = fold11 (EB) (psums xs ys) 

4.2.4 Quotient and remainder 

Finally, we turn to the problem of division. As every schoolchild knows , di
vision is the hardest of the arithmetic operations to get right since it involves 
a certain amount of guesswork. The framework of the conventional division 
algorithm for finding the quotient and remainder consists of a repeated se
quence of steps. At each step, a single bigit of the quotient is computed and 
the remainder is calculated for the next step . The result is a sequence of 
pairs : 

[( qo, rso) , (ql , rSl ) , . . .  , ( qn , rsn)] 
where qoql . . .  qn is the final quotient and rSn the final remainder. A pair 
( qk , rs k) is determined, by a function dstep say, from the previous pair, the 
given divisor, and the kth digit of the dividend. 

We can implement this scheme using the function scan introduced in 
Section 3 .5 .3 : 

divalg xs ys = scan (dstep ys) (0 , take m xs) (drop m xs) 
where m = #ys - 1 

The starting value (0, takem xs) of scan is the quotient and remainder for the 
first step of the division algorithm. The process begins with the remaining 
bigits (drop m xs) of the dividend. The value returned by divalg is a list of 
pairs , the first components of which are the bigits forming the quotient. The 
second component of the last element of the result of divalg is the required 
remainder. To illustrate: 

divalg [1 , 7, 8 , 4] [6 , 2] = [(0, [1]) , (0 , [1 , 7] ) , (2 , [5, 4]) , (8 , [4, 8] )] 

The quotient bigits are therefore [0 , 0 , 2 , 8] and the remainder is [4, 8] . 
To define dstep, we need to distinguish three cases : the dividend xs for 

the current step has length less than, equal to, or greater than the length 
of the divisor ys . In fact , since the remainder rs from the previous step has 
length at most #ys and xs = rs * [x] for some bigit x , we always have 
#xs ::; #ys + 1 . We therefore define 

dstep ys (q, rs) x = astep xs ys , if #xs < #ys 
= bstep xs ys , if #xs = #ys 
= cstep xs ys , if #xs = #ys + 1 

where xs = rs * [x] 
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The definition of astep is easy: if #xs < #ys, then the new quotient is 0 
and the new remainder is xs. Hence: 

astep xs ys = (0 ,  xs) 

Next , consider bstep. If #xs = #ys , then the new quotient q might be 
any value in the range 0 :5 q < b . However, we shall see that when divalg 
is applied in the final version of the algorithm, it will be a condition on 
the divisor ys that its first bigit is at least ( b  div 2) . This means that if 
#xs = #ys, then there can be a quotient of at most 1 . Therefore we can 
define bstep in the following way:  

bstep xs ys = (0, xs) , if negative Z8 

= (1 , zs) , otherwise 
where Z8 = vsub xs ys 

Finally, we deal with cstep, the most complicated case. In order to imple
ment cstep we make use of the following result from Knuth( [2] :Section 4.3. 1 ) . 
Suppose x = XOX1 • • •  Xn and y = Y1 Y2 ' "  Yn are non-negative integers in base 
b notation such that x/y < b. Define: 

ij = ((:Ib X b + Xl ) div yI ) min (b - 1) 

The result we need says that if Y1 � b div 2, then: 

ij - 2 :5 q :5 1i 

where q = X div y is the true quotient . In other words ,  if Y1 is sufficiently 
large, then the guess Ii overestimates the true quotient q by at most 2 .  

This guess is  used in the definition of cstep. If it  turns out to be too 
big, then the result is corrected by further subtractions as necessary. The 
defini tion of cstep is 

cstep xs ys = ( q , rsO) , 
= ( q  + 1 , rs1 ) , 
= (q + 2, rs2) , 

where rsO 
rs1 
rs2 
q 

if vless rsO ys 
if vless rs1 ys 
otherwise 
= vsub xs ( bmul ys q) 
= vsub rsO ys 
= vsub rs1 ys 
= (guess xs ys) - 2 

The function guess is defined by: 

guess (xO : x1 : xs) (y1 : ys) = b - 1 , if xO � y1 
= (xO X b + x1 ) div y1 , otherwise 

Now we are in a position to define the function vqrm which returns the 
quotient and remainder on dividing one number by another. To ensure that 
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the leading bigit y1 of the divisor ys is sufficiently large, we first multiply 
both divisor .and dividend by a suitable scale factor d. The definition of vqrm 
is: 

vqrm zs ys = (strep qs, strep rs) 
where qs = map 1st ds 

rs = bdiv (snd ( last ds» d 
ds = divalg ( bmul zs d) ( bmul ys d) 
d = b div (hd ys + 1) 

The remaining task is  to define the function bdiv for dividing a number 
by a single bigit . This is an important special case which arises frequently 
in practical calculations ,  so it merits individual attention. Suppose x = 
X1X2 • • •  Xn is the dividend and d the single bigit divisor. The elements of the 
quotient q = ql q2 . • .  qn can be computed by the scheme: 

q, = r, div d 

where rt = Xl and, in general: 

ri+1 = b X (ri mod d) + Xi+1 

Moreover, the single bigit remainder r is given by r = rn mod d .  We can 
implement this scheme using the function scan: 

bqrm (x : zs) d 
= (strep qs , ( last rs) mod d) 

where qs = map (divd) rs 
rs = scan (EEl) x zs 
r EEl x . = b x (r  mod d) + x 

In particular, if the dividend is also a single bigit, so that zs = [ ]  in the above 
definition, then we have: 

bqrm [x] d = ([z div d] , z mod d) 

as requir�d. We can now deftD.e: 

bdiv zs d 
bmod zs d 

= fst ( bqrm zs d) 
= snd ( bqrm zs d) 

This completes our package of arithmetic operations for variable-length inte
gers . Notice, in particular, how foldr, foldl and scan can be used to capture 
certain patterns of computation, patterns that arise time and again in the 
development of algorithms. 
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Exercises 

4.2.1 Define a function absint so that if number z is represented by the list 
of bigits zs, then: 

z = absint zs 

Check that 
absint ( [0] * zs) = absint zs 

Hence justify the equation: 

absint (strep zs) = absint zs 

where strep returns the standard representation of a number. 

4.2.2 Justify the equation: 

vless zs ys = (absint zs < absint ys) 

4.2 .3 Is it the case that negate = vsub [OJ? 

4.2 .4 Suggest a possible representation for signed-magnitude numbers . Re
define vadd and vsub to work with this representation. 

4.2.5 Suppose inv is a function which converts a string of digit characters 
to an element of mnt. We caD. define inv by: 

inv = pack · map digit 

where digit converts a digit character to a decimal digit , and pack converts 
a list of decimal digits to an element of mnt . Define digit .  Using foldl and 
vadd, define pack . 

4.2.6 Consider outv , the inverse function to inv of the previous exercise. 
Under what conditions on zs (if any) should the equation: 

outv ( inv zs) = zs 

hold? Assuniing b = 10000, construct a definition of outv . 

4.2.7 Can foldl be used instead of foldll in the definition of vmul? 

4.2.8 Is €B ,  where: 

zs €B ys = vadd (zs * [0] ) ys 

an associative operator? Can foldll be replaced by foldrl in the definition 
of vmul? 

4.2.9 Define vrnul to work with negative as well as positive arguments ,  as
suming signed-magnitude representation. 
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4.2.10 What simple modification to dstep in the definition of division avoids 
the recalculation of #ys at each stage? 

4.2 . 11  Suppose y and b are integers with 1 :5 y < b. Prove that 

b div 2 $ y X ( b  div (y + 1)) < b 

4.2 .12 Modify the definition of vqrm so that it works for arbitrary numbers , 
negative as well as positive. 

4.2.13 Define functions vdiv and vmod which return the quotient and re
mainder on division. 

4.2.14 The definition of vqrm given in the text can be tuned in a number of 
ways. In particular, it is possible to improve the guess for q (see Knuth [2]) 
and a number of length calculations can be avoided by using versions of 
addition and subtraction which produce (n + l)-bigit results from n-bigit 
arguments .  Show how to make vqrm more efficient. 

4.3 Text processing 

Now let us turn to something completely different. In this section we shall in
vestigate the mathematics of an interesting non-numerical application which 
deals with the general problem of processing text . 

A text can be viewed in many different ways. The 'atomic' view is that 
a text is just a list of characters , so we introduce the type synonym: 

text = =  [char] 

However, for certain problems it may be more convenient to view a text as 
a sequence of words , or perhaps as a sequence of lines , or even as a sequence 
of paragraphs. In this section we shall develop functions for converting from 
one view of texts to another. 

4.3.1 Texts as lines 

Consider first the problem of converting a text , viewed as a list of characters , 
to a sequence of lines . A line is a list of characters not containing the newline 
character '1' . We therefore introduce the synonym: 

line == [char] 

Let the required function be called lines . Its type is given by: 

lines : :  text -+ [line] 

For example, we want to have: 
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? lines "This is a ttext t" 
["This is a" , "text" , ""] 

? lines "This is a ))text)" 
["This is a" , "" , "text" , ""l 
? lines "This is a text" 
["This is a text" ] 

87 

As these examples illustrate, any sequence of characters between two succes
sive newline characters constitutes a line, as does the sequence of characters 
from the beginning of the text up to the first newline (if any) , and the se
quence of characters from the last newline to the end of the text . Note that 
the sequence of characters after the last newline may be empty. The decision 
to break a text up in this way reflects the view that a newline is a separator 
character between lines rather than a terminator character to signal the end 
of a line. In particular, it implies that the number of lines in a text is always 
one more than the number of newline characters . 

The function lines can be specified formally as the inverse of another 
function, unlines say, which inserts a newline character between adjacent 
lines and then concatenates the result . The definition of unlines uses foldr1 : 

unlines . .  [line] - text 
unlines = foldr1 (al) 
xs al ys = xs * [')'l * ys 

The operator al is associative but does not possess an identity element , so 
the value of (unlines [ ] )  is not defined. Hence a definition by either foldrt or 
foldl1 is appropriate. The former is more efficient (see Chapter 6) .  

We can now specify lines by requiring: 

lines ( unlines xss) = xss (spec. ) 

for all non-empty sequences of lines xss . In other words, lines is specified as 
the inverse of unlines. 

In order to construct an executable definition of lines, we shall look for 
a definition of the form: 

lines = foldr (@) a 

for a suitable choice of @ and initial value a. Since unlines uses the function 
foldr (actually, foldrt ) ,  it seems plausible to see if a definition of lines can 
be based on foldr too. 

We are going to discover a and @ simply by a process of calculation. To 
do this we shall make use of the following facts about foldr1 and /oldr : 

foldr1 f [x] x 
foldr1 f ( [xl * xs) = f x (foldr1 f xs) (provided xs =I [ ] ) 

foldr f a [ ]  = a 
foldr f a ( [x] * xs) f x (foldr f a xs) 
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(In fact , suitably rewritten, these equations constitute the formal recursive 
definitions of these functions , as we shall see in the next chapter. )  For the 
moment , each equation can be justified by appeal to the informal definitions 
of foldrl and foldr . We can use the equations to derive the following facts 
about lines and unlines: 

unlines [xs] = u ( unlines. l )  
unlines ( [xs] * xss) = xs ffi unlines xss ( unlines .2) 

lines [ ]  = a ( lines. l ) 
lines ( [x] * xs) = x ® lines xs ( lines.2) 

The first two equations follow from the equations for foldrl , and the second 
two from the equations for foldr and the putative form for lines. 

Now, to calculate a, we reason as follows : 

a = lines [ ]  ( lines. 1) 
= lines (unlines [ [ ] ] )  (unlines. l ,  with u = [ ] ) 
= [ [ ]] (spec . )  

The last equality uses the specification of lines as the inverse of unlines. So 
we have succeeded, fairly quickly, in calculating a.  

Next , let us tackle ®. We have: 

x ® us = x ® lines ( unlines xss) (spec . )  
= lines ( [x] * unlines us) ( lines.2) 

To continue, we need to distinguish the cases x = 't' and x i- 't' . 

Case x = 't' . We have: 

lines ( ['t'] * unlines xss ) 
= lines ( [ ]  * ['t'] * unlines xss) 
= lines ( [ ]  ffi unlines xss) 

(*) 
(ffi . l )  

= lines ( unlines ( [ [ ] ]  * xss) )  
= [ [ ] ]  * xss 

( unlines.2) 
(spec. )  

It follows that : 
't' ® us = [ [ ] ]  * xss 

Case x i- 't' . Writing xss = [ys] * yss (which is acceptable as ® is applied 
only to non-empty lists) ,  we have: 

lines ( [x] * unlines ( [ys] * yss))  
= lines ( [x] * (ys * ['t'] * unlines yss) )  
= lines « [x] * ys) * ['t'] * unlines yss) 

lines « [ x] * ys) ffi unlines yss) 
= lines ( unlines ( [ [x] * ys] * yss) )  

[ [x ]  * ys] * yss 

( unlines.2) 
(* assoc.)  
(ffi . l ) 
( unlines.2) 
(spec . )  
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Hence it follows that 

x ® xss = [[x] * hd xss] * tl xss 

Putting the above results together, we have: 

lines = foldr ( ®) [ [ ]] 
x ® xss = [[ J] * xss , if x = '1' 

= [[x ] * hd xss] * tl xss, otherwise 

This is the desired constructive definition of lines . 
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What we have just done is a fairly sophisticated example of program synthe
sis. Starting from a precise but non-executable specification, and using only 
simple equational reasoning, we have derived an executable definition of the 
required function. Moreover, the technique is a familiar one in many areas of 
mathematics : first a form for the solution is guessed, and then the unknowns 
in the form are calculated. 

4.3.2 Lines as words 

It is instructive to develop this example a little further to show how other text 
processing functions can be synthesised. Define a word to be a non-empty 
sequence of characters not containing the newline or space characters. We 
introduce the synonym: 

word == [char] 

In a similar spirit to before, we can seek a constructive definition of a function 
words for breaking a line into words .  The type of words is therefore: 

words : :  line -+ [word] 

For example: 

? words "Thisuuuisuauline" 
["This" , "is" , "a" , "line" ] 

? words "line" 
["line"] 

The function unwords defined by: 

unwords foldr1 (E!)) 
xs ED ys = xs * ['u '] * ys 

takes a sequence of words and concatenates them after inserting a single 
space between adjacent words . We can (almost) define words as the inverse 
of unwords and so derive a constructive definition in exactly the same way 
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as before. The only difference is that , by definition, a word is a non-empty 
sequence of characters: lines can be empty, but words cannot be. Putting it 
another way, if two newline characters are adjacent, there is an empty line 
between them; but if two space characters are adjacent , there is no word 
between them. The resolution of this problem is simple: define the inverse of 
unwords in the same way as we did for lines , but then filter out the 'empty' 
words . We therefore obtain:  

words = filter (i [ ] )  . foldr (®) [[ ] ] 

where ® is as previously defined, except that '1,' is replaced by ' u ' .  

Note that , although words · unwords is the identity function on non-empty 
sequences of words , the function unwords · words is not the identity function 
on lines . Indeed, it is not even a total function. When it is defined,  redundant 
spaces are removed between words. 

4.3.3 Lines into paragraphs 

Finally, to complete a logical trio of functions, we can define a paragraph to be 
a non-empty sequence of non-empty lines and seek a definition of a function 
paras which breaks a sequence of lines into paragraphs. If we introduce the 
type synonym: 

para == [line] 

then the type of paras is given by: 

paras :: [line] -+ [para] 

This time, the inverse function un paras takes a sequence of paragraphs and 
converts it to a sequence of lines by inserting a single empty line between 
adjacent paragraphs and concatenating the result . It can be defined by: 

un paras 
u Ell ys 

= foldr1 (Ell ) 
= u * [[ ]] * ys 

Just as in the case of words , we can construct the inverse of unparas and 
then filter out the empty sequences to obtain the definition of paras . 

4.3.4 The basic package 

Let us now summarise the above results by writing out the complete defini
tions of the functions we have described (and choosing more suitable names 
for the operators) . Our basic text processing package is contained in the 
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following script : 

unlines 
unwords 
unparas 

insert a xs ys 

lines 
words 
paras 

breakon a x xss 

= 
= 
= 

= 
= 
= 

= 
= 
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foldr1 ( insert "t') 
foldr1 ( insert 'u ') 
foldrt ( insert [ ] ) 

xs * [a] * ys 

foldr ( breakon "t') [ [ ]] 
filter (:f [ ] )  . foldr ( breakon 'u') [ [ ]] 
filter (:f [ ] ) . foldr ( breakon [ ] ) [ [ ] ] 

[[ ]] * xss, if x = a 
[[x] * hd xss] * tl xss, otherwise 

These six functions have a variety of uses . We give just two. The number 
of lines, words and paragraphs in a text can be counted by: 

countlines = ( #) . lines 
countwords = ( # ) . concat . map words · lines 
count paras = ( #) . paras · lines 

Second, we can "normalise" a text by removing redundant empty lines 
between paragraphs and spaces between words . We have: 

normalise . .  text -+ text 
normalise = unparse . parse 

parse . . text -+ [ [ [word]]] 
parse map ( map words) . paras · lines 

unparse . .  [ [ [  word]]] -+ text 
unparse = unlines . unparas . map ( map unwords) 

To parse a text here means to break it into lines , paragraphs and words. 

4.3 .5  Filling paragraphs 

The function normalise does not change the number of words on a line, but 
merely removes redundant spaces . A more useful function is "filling" . To 
fill a paragraph is to arrange the words of the paragraph into a sequence of 
lines in such a way that (i) the length of each line does not exceed a certain 
fixed column width; and (ii) the sequence as a whole minimises some notion 
of waste. For example, we may want the number of lines to be as small as 
possible. One simple algorithm for filling paragraphs is "greedy" in nature: 
at each stage the algorithm chooses the longest sequence of words which will 
fit on a line. For this algorithm to work (indeed, for the filling problem to 
have a solution at all) it is necessary to suppose that the column width is 
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enough to accommodate the longest possible word. It can be shown that the 
greedy algorithm minimises the number of lines. 

We can define the greedy algorithm in the following way: 

fill 
fill m ws 

n'Um -+ [word] -+ [[word]] 
= [ ] ,  if ws = [ ]  
= [tstline] * fill m restwds, otherwise 

where fstline = take n ws 
restwds = drop n ws 
n = greedy m ws 

In this algorithm, the value of (greedy m ws) is the length of the longest initial 
segment of ws which will fit on a line of given column width m. One way of 
defining greedy is to write :  

greedy m ws = max [#'Us I 'Us +- inits WS j #'Unwords 'Us � m] 

Here, ( initsws) is a list of all non-empty initial segments of ws . This definition 
of greedy is not very efficient because the value of 'Unwords is recomputed for 
each value 'Us. A more efficient version is as follows : 

greedy m ws = #takewhile (� m) (scan (Ell) (- 1) ws) - 1  
where n Ell word = n + #word + 1 

The operator Ell is defined so that : 

scan (Ell ) (-1 )  ws = [-1] * [#'Unwords 'Us I 'Us +- inits ws] 

If this list is truncated by applying the function takewhile (�  m), then the 
length of the result will be one greater (because of the starting value -1)  than 
the length of the longest initial segment 'Us of ws for which #'Unwords 'Us � m. 
But this is just the definition of (greedy m ws) .  The new definition is more 
efficient because not all initial segments of ws need to be examined, and also 
because lengthy recalculations of 'Unwords are avoided. 

Using fill we can left-justify a text within a specified column width m by 
the function filltext defined as follows:  

filltext m 
textparas 
linewords 

= 'Un parse . map (fill m) . textparas 
= map linewords . paras · lines 
= concat · map words 

This function converts a text to a list of paragraphs , each paragraph being 
converted to a list of words , fills each paragraph , and reconstitutes the text 
leaving one space between words ,  and one blank line between paragraphs . 
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4.3.6 Summary 

We have covered a good deal of ground with this example and it is worthwhile 
to identify the main landmarks . First , just as in the treatment of variable
length arithmetic, there is the consistent use of higher-order functions to 
express common patterns of computation in a concise manner. Our basic 
text processing package is only eight lines long, but it is remarkably powerful. 

Second, we see the technique of specifying functions of interest as the 
inverses of functions which we know how to compute. These specifications 
are not executable but they capture in the clearest possible way just what 
we want to achieve. 

Third, there is the systematic use of equational reasoning to derive con
structive definitions of some functions from their specifications. In essence, 
we have derived these programs by a process of manipulating formulae: a 
process very much in the spirit of normal mathematical traditions. 

Exercises 

4 . 3 . 1  Justify the claim that the operator EB used in the definition of unlines 
is associative but does not possess an identity element . 

4.3.2 Verify the following equations: 

unlines [xs] = 
unlines ( [xsl* xss) = 

lines [ ]  
lines ( [x] * xs) = 

xs 
xs EB unlines xss 

a 
x ® lines xs 

( unlines . 1 ) 
( unlines .2) 

( lines . 1) 
( lines .2) 

4.3.3 Suppose we adopt the convention that a newline character is a termi
nator for lines , rather than a separator. Redefine unlines to take account of 
this decision and repeat the derivation of the new version of lines. 

4.3.4 Give an example to show that unwords . words is a partial function. 

4.3.5 Show that the greedy algorithm minimises the number of lines . As 
a fairly difficult additional exercise, show that the greedy algorithm also 
minimises the function waste , where 

waste m lines = sum [m - #unwords ws I ws f- lines] 

4.3.6 Check that 

scan (EB) (-1 )  ws = [- 1] * [#unwords us I us f- inits ws] 

4.3.7 Extend the problem of filling text by developing an algorithm for in
serting sufficient spaces between words so that the text is justified to the 
right boundary. 
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4.4 Turtle graphics 

The next example is fun since it involves drawing pictures. It will also demand 
more hard work on the part of the reader, since much of the material is 
presented in the way of exercises . 

Consider a device (called a 'turtle') which can move around a potentially 
infinite rectangular grid. At any one moment , the turtle is at some grid 
point and is oriented in one of four directions: North, East, South or West. 
The turtle is equipped with a pen which can be either in the 'up' or 'down' 
position. When the pen is down, each grid point that the turtle passes over 
is marked; when the pen is up the turtle moves without leaving a trail. 

The commands which can be issued to the turtle are of three kinds : 

1. To turn, either one direction to the left or to the right. 

2. To move one step along the grid in the direction currently indicated. 

3. To put the pen up or down. 

Given an initial state and a sequence of commands, the turtle will trace 
out a certain pattern over the grid. The object of this section is to define 
functions for moving the turtle and drawing the resulting trail. 

A turtle state consists of a current direction, a pen position and a point on 
the grid. A turtle command is a function from states to states. The following 
type synonyms can therefore be introduced: 

state -- (direction, pen, point) 
direction -- num 
pen -- bool 
point -- (num, num) 
command -- state -+ state 

It is convenient to represent the coordinate system of the grid with the 
x-axis going from North to South, and the y-axis going from West to East 
(i.e. the standard system but turned 90 degrees clockwise) . Directions can 
be coded as the numbers 0 (North) , 1 (East) , 2 (South) , and 3 (West) . The 
pen-up position can be represented by the value False , and pen-down by the 
value True. 

The function move can be defined by the following equations: 

move . .  command 
move (O, p , (x , y)) = (O, p , (x - l, y)) 
move (l , p , (x , y)) = (l , p , (x , y + 1)) 
move (2, p, (x, y)) = (2, p , (x + 1 , y)) 
move (3 , p , (x , y)) = (3 , p , (x , y - 1)) 
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The function right for turning 90 degrees right is given by: 

right . . command 
right (d , p , (x , y)) = «d +  1) mod 4, p, (x , y)) 

The functions left, up and down are left as exercises for the reader. 
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For example, wherever the turtle happens to be initially, the following 
sequence of commands causes it to trace the perimeter of a square of side k 
and return to its starting point : 

square k = [down] * concat ( copy 4 side) * [up] 
where side = copy move k * [right] 

The function turtle takes a sequence of commands and returns a sequence 
of states . Assume the turtle always starts off at the origin facing North with 
its pen in the up position. We then have: 

turtle 
turtle 
apply to x I 

. .  [command] -+- [state] 
= scan apply to (0 ,  False, (0 , 0) )  
= I x 

The remaining task is to define a function for drawing a turtle trail. A 
trail is a list of those coordinate points visited by the turtle while the pen 
was down. We define: 

display 
display 

[command] -+- [char] 
= layout · picture . trail . turtle 

Here, trail produces a list of points ,  picture converts this list into a two
dimensional picture (a value of type [ [char] ] ) ,  and layout flattens the picture 
into a list of characters by inserting newlines between rows and concatenating 
the results .  We shall leave the definitions of trail and layout as exercises for 
the reader. 

One way to convert a trail into a picture is to first build a boolean array 
(called, say, a "bitmap" ) and then represent the boolean values by strings of 
suitable characters . This factorisation allows easy modification to the visible 
form of the picture. We can define: 

picture 
picture 

bitmap ps 

range xs 

[point] -+- [[char]l 
= symbolise · bitmap 

= [ [(x , y) in ps I y - yran] I x - xran] 
where xran = range (map 1st ps) 

yran = range ( map snd ps) 
[min xs . .  max xs] 

Here, the test (x in xs) returns True if x is an element of xs , and False 
otherwise. We can define it in the following way: 

x in xs = or (map (= x) xs) 
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In the WQrst case, the test fQr list membership requires n steps, where n is 
the length Qf xs. 

Since a turtle trail may mark the same PQint many times, Qne sensible 
QptimisatiQn is to. remQve duplicates frQm the list Qf PQints .  In fact , if we 
first SQrt the PQints ,  then duplicate values will be brQught tQgether and it is 
Qnly necessary to. remQve adjacent duplicates . Assuming the existence Qf a 
functiQn sort which will SQrt PQints in increasing Qrder Qf x-cQQrdinate (and 
fQr equal x-cQQrdinates , in increasing Qrder Qf y-cQQrdinate) , we have: 

sortpoints = remdups · sort 

where remdups is a functiQn fQr remQving adjacent duplicates . Its definitiQn 
is left as an exercise. 

The abQve methQd fQr cQmputing bitmap is inefficient . A faster metho.d can 
be based Qn the assumptiQn that the PQints are sQrted in increasing Qrder, 
first Qn x-cQQrdinate and then Qn y-cQQrdinate. First , divide the list Qf pQints 
ps into. sublists, Qne fQr each value x in xran. The sublist cQrresPQnding to. 
x is the (pQssibly empty) list Qf Qriginal PQints whQse first cQQrdinate is x. 

Each sublist will be sQrted in increasing Qrder Qf y-cQQrdinate. Next , divide 
each Qf these sublists into. sub-sublists, Qne fQr each value Qf y in yran. The 
sub-sublist corresPQnding to. Y will be thQse PQints Qf the sublist whQse secQnd 
cQQrdinate is y. The sub-sublist (fQr y) , Qf the sublist (fQr x ) , will either be 
empty, in the case (x ,  y) is nQt a marked PQint , Qr cQnsist Qf just a single 
element (x ,  y) . In this way it is PQssible to. determine the CQrrect "bit" value 
Qf (x , y) . The cQrresPQnding definitiQn is: 

lastbitmap ps = [[ps2 f:. [ ] I ps2 - splitwith snd yran ps1 ] 
I ps1 - splitwith 1st xran ps] 

where xran = range ( map 1st ps) 
yran = range ( map snd ps) 

The functiQn splitwith is given by the equatiQns: 

splitwith I xs ys 
equals I X y 

split 
split [ ]  xs 
split (p : ps) xs 

= split ( map ( equals J)  xs) ys 
= (f y = x) 

[a � bool] � [a] � [[al l  
[ ] 
[takewhile p xs 1 * split ps ( dropwhile p xs) 

The functiQn split takes a sequence of predicates [pI , P2 , . . .  , Pnl and a list xs , 
and partitiQns xs into. a sequence Qf lists [XSl , XS2 , • • • , xsn] ,  where XSI is the 
IQngest initial segment Qf xs all of whQse elements satisfy pI , and XS2 is the 
IQngest initial segment Qf the remaining list , all Qf whQse elements satisfy P2 , 
and so. Qn. The functiQn splitwith is an Qptimised versiQn Qf: 

splitwith l xs ys = [[y I y - YS j I y = xl i x - xs] 



4.5 PRINTING A CALENDAR 97 

under the assumption that xs is strictly increasing, and (map f ys) is a non
decreasing sequence of elements from xs. 

Exercises 

4.4.1 Define the commands left, for making a left-turn, and up and down 
for putting the pen up and down. 

4.4.2 Define a function ( block k) which causes the turtle to trace a solid 
square of side k .  

4.4.3 Define trail and layout . 

4.4.4 Assuming there are n points ,  representing a continuous trail, estimate 
the worst case time complexity of bitmap as a function of n (Le. say whether 
the number of steps required is proportional to n, n2 , n3 , or whatever) .  (Hint: 
Think of a simple trail for which the algorithm is at its worst and hence put 
bounds on the lengths of xran and yran. )  

4 . 4 . 5  Define a function boolstr which converts each truth-value to a suitable 
string of characters , and hence define symbolise. 

4.4.6 Bearing in mind that duplicate values in a sorted list are adjacent , 
construct a definition of remdups for removing duplicate elements .  (Hint: 
Use a list comprehension in conjunction with the standard function zip . )  For 
what kind of turtle trails would it be sensible to apply remdups before, as 
well as after, sorting? 

4.4.7 Estimate the increase in efficiency by using fastbitmap rather than 
bitmap. 

4.4.8 It is possible to derive fastbitmap (using the unoptimised definition of 
splitwith) from the original definition of bitmap. The derivation uses only 
equational reasoning and a small number of laws about list comprehensions. 
As a challenging exercise, find the rules and produce the derivation. 

4.4.9 Define some interesting turtle trails and draw them using the functions 
introduced above. 

4.5 Printing a calendar 

As a final example in the use of list processing techniques, we shall design 
a program for printing a calendar. Given a year, the program will display a 
4 X 3 array of calendar months. The format for printing a month is illustrated 
in Figure 4.1 .  

The right way to tackle problems of this kind, as we have seen in some 
earlier examples,  is to try and separate the construction phase from the 
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OCTOBER 1988 

Sun 2 9 16 23 30 
Mon 3 10 17 24 31  
Tue 4 11 18 25 
Wed 5 12 19 26 
Thu 6 13 20 27 
Fri 7 14 21 28 
Sat 1 8 15 22 29 

Figure 4.1 A calendar month. 

printing phase as much as possible. As logically independent tasks , we can 
consider how to provide the necessary information to build an "abstract" 
calendar and how to print it in the required format . If we succeed in this 
separation of concerns, modifications to the program, such as printing the 
calendar in a different format or printing only part of the calendar, will be 
easier to, carry out . 

4 . 5 . 1  Pictures 

Let us consider the printing phase first . Essentially, this means we have to 
build a picture of the calendar. However, unlike the pictures of turtle trails in 
the previous section (which were generated from lists of points in the plane) , 
we now have to build pictures out of smaller pictures by means of appropriate 
combinators . 

A picture can be represented by a list of lists of characters in which each 
element list has the same length. The height of a picture is the number of 
element lists ,  and the width is their common length. Thus: 

height p = #p 
width p = #(hd p) 

Note that p must be a non-empty list for it to have a well-defined width, so 
height p � 1 .  

We can build pictures either directly or in terms of component pictures 
by means of picture operators. Here are two simple picture operators: 

p above q 
p beside q 

= p * q,  if width p = width q 
= zipwith (*) (p , q) ,  if height p = height q 

The operation (p above q) places picture p directly above picture q , and 
(p beside q) places p to the left of q .  In the first operation, the widths of 
the two pictures must be the same and, in the latter, the two heights .  
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These operations can be generalised to functions stack and spread in the 
same way that (*) can be generalised to concat: 

stack foldr 1 (above) 
spread = foldr 1 (beside) 

Both stack and spread take a list of pictures; stack stacks them vertically, 
and spread spreads them horizontally. Although the operators (above) and 
(beside) are associative, neither has an identity element , so a definition by 
foldrl is appropriate. Any identity element would have to have the same 
height and width as every picture and this is clearly not possible. 

On the other hand, it is possible to define an empty picture of a specified 
height and width; this is just a picture filled with spaces: 

empty (h, w) = copy h ( copy w 'u ') , if h >  0 /1.  w > 0 

This defines empty (h,  w ) to be a list (of length h > 0) of lists (each of length 
w > 0) of space characters . 

The function ( block n) defined by: 

block n = stack · map spread · group n 

takes a list of pictures, all of which must have the same height and width, 
assembles them into groups of n, turns each group into a spread, and finally 
stacks the results above one another. The subsidary function (group n) takes 
a list of length m X n and returns m lists of length n. One definition of 
(group n) is: 

group n xs = [take n (drop j xs) I j +-- [0 , n . .  (#xs - n)]] 

The effect of block 3 on the twelve pictures Pb P2 , . . .  , P12 would be to 
transform them into the picture: 

PI P2 P3 

P4 Ps P6 

P7 Ps P9 

PIO Pll Pl2  

On the other hand, the function ( blockT n) defined by: 

blockT n = spread · map stack · group n 

would convert the same list of pictures into the picture: 

PI P4 P7 Pto 

P2 Ps Ps Pll 

P3 P6 P9 Pl2  
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Thus ( blockT n) flips the result of applying ( block n) about the left-right 
downwards diagonal. We shall use these two functions below. 

We can turn a picture into a larger one by framing it. For example, 
suppose we want to frame a picture p in the top left-hand corner of a larger 
picture of height m and width n. This can be done by the function lframe : 

lframe (m, n) p = (p beside empty (h,  n - w» above empty (m - h, n) 
where h = height p 

w = width p 

It is left as an exercise for the reader to modify the definition of lframe so that 
it also works in the case m = height p or n = width p .  In a similar fashion we 
can centre a picture in a larger one , or place it in the top right-hand corner . 

Finally, we can display a picture by the function display where: 

display = unlines 

This is just a renaming of the function unlines considered in Section 4.3.  

Given the above functions , the printing phase of the calendar problem is 
straightforward: 

calendar = display · block 3 . map picture · months 

In the definition of calendar , the function months takes a year number 
and turns it into a list of length 12 with one entry for each month . The 
function picture turns this information into a picture for a month, ( block 3) 
arranges the results as a 4 X 3 picture, and display converts it to printable 
form. This leaves only the functions months and picture to be defined. 

Exactly what information do we need to build a calendar for a particular 
month? Well, we need the month name and the year. This will enable us to 
print a title for each month. We also need to know the day of the week on 
which the first day of each month falls and the number of days in the month. 
These two numbers will enable us to fill a table with the entries for a month. 

Let us suppose, therefore, that the function months returns a list of 4-
tuples (mn, yr ,fd, ml), where mn is the name of the month, yr the year, fd 
the first day of the month and ml the length of the month . We shall postpone 
the definition of months until we have considered how to define picture . 

4.5.2 Picturing a calendar 

We can start the definition of picture as follows:  

picture (mn, yr , fd, ml) = ( title mn yr) above (table fd ml) 

Assuming each month is converted to a picture of width 25 (so that 3 months 
will fit side-by-side on a normal terminal screen) , we can define the picture 
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for a title by: 

title mn yr == lframe (2 , 25) [mn * "u" * show yr] 
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This frames the title in a 2 X 25 picture, leaving a blank line between the 
heading and the table. 

In a similar way, we can define the table: 

table fd ml == lframe (8, 25) (daynames beside ( entries fd ml) )  
daynames == ["Sun" , "Mon" ,  "Tue" , "Wed" , "Thu" , "Fri" ,  "Sat"] 

This places the 7 X 3 picture of the days beside the entries for a month and 
converts the result into a 8 X 25 picture. One blank line is left at the bottom 
of the picture to separate it from the month below. 

In order to define entries we need to assign numbers to the days of the 
week. It is convenient to say Sunday is day 0, Monday is day 1, and so on up 
to Saturday, which is day 6. Suppose first we can define a table of consecutive 
numbers (reading downwards) arranged so that the first day of the month 
occupies its rightful place. For example, with fd == 6 we get : 

-5 2 9 16 23 30 
-4 3 10 17 24 31 
-3 4 11 18 25 32 
-2 5 12 19 26 33 
-1  6 13 20 27 34 

0 7 14 21 28 35 
1 8 15 22 29 36 

Each of these numbers can be converted to simple 1 X 3 pictures of digits , 
or empty pictures if the number corresponds to an impossible date. This 
collection of pictures can be assembled into a table by using the function 
blockT:  

entries fd ml 
dates fd ml 
date ml d 

== blockT 7 (dates fd ml) 
== map (date ml) [1 - fd . .  42 - fd] 
== [rjustify 3 "u" ] ,  if d < 1 V ml < d 
== [rjustify 3 (show d)] ,  otherwise 

4.5.3 Building a calendar 

The remaining task is to define the function months. This function can be 
defined with the help of a function zip4 which takes a 4-tuple of lists into a 
list of 4-tuples . We shall leave its definition in terms of zip as an exercise. 
First of all, we define: 

months yr == zip4 (mnames , copy 12 yr ,Jstdays yr , mlengths yr) 
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The month names are given by a simple list: 

mnames = ["JANUARY" , "FEBRUARY" , "MARCH" , "APRIL" , 
"MAY" , "JUNE" , "JULY" ,  "AUGUST" , "SEPTEMBER" , 
"OCTOBER" , "NOVEMBER" , "DECEMBER"] 

and so are the lengths of the months: 

mlengths yr = [31 ,feb, 31 ,  30, 31 ,  30, 31 ,  31 ,  30, 31 ,  30, 31] 
where feb 29, if leap yr 

= 28, otherwise 

The definition of ( leap yr) is based on the well-known formula for determining 
whether the year is a leap year or not : 

leap yr = (yr mod 400 = 0) ,  if yr mod 100 = 0 
= (yr mod 4 = 0) ,  otherwise 

We also need one more formula from 'Calendar Theory' , namely how to 
calculate the day of the week for January 1. Calling this value jan1 we have: 

jan1 yr = (yr + (yr - 1) div 4 - (yr - 1) div 100 
+ (yr - 1) div 400) mod 7 

This works because in the Gregorian calendar January 1 in the year 0 was a 
Sunday, and (365 mod 7) = 1 .  (Recall, day numbers were chosen to be the 
range 0 to 6 . )  From this value we can calculate the first days of all other 
months. We have: 

fstdays yr = take 12 ( map (mod 7) (scan ( + ) (jan1 yr) (mlengths yr) ) )  

This computes the accumulated sums of the month lengths (using scan) ,  
starting at January 1 ,  reduces them modulo 7 to find the day of the week 
for the first days of each month, and finally takes just the initial 12 values to 
give the required answer. 

This completes our description of the calendar problem. 

Exercises 

4.5.1 Show that: 
lframe (m, n) p = ..L 

if m = height p or n = width p. Redesign lfmme so that these cases are 
allowed. 

4.5.2 Define the function rframe (m, n) which places a picture in the top 
right hand corner of a larger picture of height m and width n. Similarly, 
define cframe (m, n) which places a picture in the centre of a larger one. 
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4 . 5 .3 Define a function which given a year and a month prints out the cal
end ax for the given month. 

4 . 5 .4 Define a version of the calendar problem which prints a month with 
the days across the top of the table rather than down the left-hand side. 

4 . 5 . 5  Define a version of the calendar problem which prints a month with 
the days of the week beginning with Monday rather than Sunday. 

4 . 5 .6 Define a function which takes a date and returns the day of the week 
on which the date falls . 

4 . 5 . 7  Define the function zip4 in terms of zip. 
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Recursion and Induction 

This chapter introduces the important ideas of definition by recursion and 
proof by induction. We begin by seeing how they work in the case of natural 
numbers , and then go on to apply them to lists . In particular, recursion can 
be used to define the functions introduced in Chapter 3 , and induction can 
be used to prove the many laws and identities encountered there. 

5.1  Recursion and induct ion over 

natural numbers 

Let us begin by examining recursion and induction at work in a familiar 
context: the definition of exponentiation. Recall that z � n means z raised 
to the nth power. We will restrict our attention to the important case where 
n is a natural number. 

In a mathematics textbook, z � n  is usually written zn . There one might 
see the following recursive definition of exponentiation : 

zO = 1 
z (n+1) = z X (zn ) 

In our notation, this is rewritten simply as : 

This definition uses pattern matching with the natural numbers, introduced 
in Section 2.5.  

The above definition can be rewritten in a form that does not employ 
pattern matching: 

104 

z � n  = 1 ,  if n = O  
= x x x � (n - 1) ,  if n > O  
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However, the definition using 0 and (n + 1) is preferred , because it is clearer 
and it is closer to normal mathematical practice. 

It should be clear that these equations define x�n for any natural number 
n. If n is zero then the first equation applies , while if n is greater than zero 
then the second equation applies . Thus: 

5 � 3 = 5 X (5 � 2) (�.2) 
= 5 X (5 X (5 � 1» (�.2) 
= 5 X (5 X (5 X (5 � 0)))  (�.2) 
= 5 X (5 X (5 X 1)))  (�.1)  
= 125 

The comment "(�.2)" at the end of a line means that the equality on that 
line is justified by the second equation defining (�) , and similarly for "(�. 1 )" . 
In general, we will refer to the ith equation of the definition of a function f 
by writing (I . i ) .  

Notice that the pattern (n + 1 )  matches the argument 3 by binding n 
to 2. The pattern (n + 1 )  cannot match 0, because n must be bound to a 
natural number. Thus, for every natural number n the term x � n  will match 
either the first equation or the second equation defining (�) , but never both 
equations . If n is not a natural number, as in x � (-3) or x � 2.5 or x � 1., 
then neither equation matches , s o  x � n = J.. (Here we are referring to the 
recursive definition above . Of course, x � y is actually well-defined for any 
real number y ,  but we are ignoring that for now.) 

It may seem that there is something magical about defining x � (n  + 1 )  
in  terms of x � n .  Is  such as  step valid? It is easy to convince ourselves that 
it is . Clearly, x � 0 has a value, because this is given by equation (�.1 ) .  By 
equation (�.2) , we know that if x � n has a value then so will x � (n + 1) .  So 
since x � 0 has a value, so does x � 1 j and then since x � 1 has a value, so does 
x �2;  and so on. So x � n  has a value for every natural number n, as required. 

In practice, this reasoning may also be applied backwards .  (Indeed,  the 
word 'recurse' comes from the Latin for 'to go back' .) Given a value for x 
and n the value of x � n  is found by finding the value of x � (n - 1) ,  and this 
is found by finding the value of x � (n - 2) ,  and so on, until eventually x � 0 
must be reached.  

This argument , whether you think of it  forward or backwards, is an exam
ple of a proof by mathematical induction. In general, to prove by induction 
that a proposition P( n) holds for any natural number n one must show two 
things: 

Case O .  That P(O) holds ; and 

Case (n  + 1 ) .  That if pen) holds , then pen + 1 )  holds also. 

This is valid for exactly the same reason that recursive definitions are valid. 
We know by the first case that P(O) holds ; and so we know by the second 
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case that P(l) holds also; and so we know again by the second case that P(2) 
holds also; and so on. So P( n) must hold for every natural number n. 

As an example, let us prove the well-known law: 

for all x and all natural numbers m and n. 

Proof. The proof is by induction on m. 

Case O.  We have: 

x � (O + n) = x � n  
= 1 x (x � n) 
= (x � O) x (x � n) 

(law of +) 
(law of x )  
(�. 1 ) 

which establishes the case. 

Case (m + 1). Assume that x � (m + n) = (x � m) x (x � n); this is called 
the induction hypothesis. Then we have: 

x � «m + 1) + n) = x � «m + n) + l) 
= x x (x � (m + n)) 

x X « x � m) X (x � n» 
= (x X (x � m» X (x � n) 
= (x � (m + 1» x (x � n) 

which establishes the case. D 

(laws of +) 
(�.2) 
(hypothesis) 
(law of X )  
(.2) 

This example shows the style we will use for inductive proofs , laying out 
each case separately and using a " D "  to mark the end. 

As a second example of a recursive definition, consider the Fibonacci 
numbers . In a mathematics textbook, these might be defined by the following 
recurrence relationship: 

Thus, Fo through F9 are : 

Fo 0 
Fl = 1 

H+2 Fk + Fk+1 

0, 1 , 1 , 2 , 3 , 5 , 8 , 13, 21 , 34 

where each number in the sequence is the sum of the two preceding it . 
In our notation we will write Fk as fib k,  and the above definition becomes : 

fib 0 
fib 1 
fib (k + 2) 

o 
1 
fib k + fib (k + 1) 
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Recall that (k  + 2) is a legal pattern, just like (n + 1). The pattern (k + 2) 
cannot match 0 or 1,  since k must be a natural number, so for any k the 
value of fib k is defined by exactly one of the above equations. 

The Fibonacci numbers satisfy an astounding number of laws, many of 
which are conveniently proved by induction. We will prove only one here. For 
others, the reader should consult the exercises, or Knuth [3] ,  or the Fibonacci 
Quarterly journal. 

Let ¢ and � be the roots of the equation x2 - x - 1 = 0,  that is: 

¢ = 
1 + .J5 and � = 

1 - .J5 2 2 

So ¢2 = ¢ + 1 and �2 = � + 1 .  Then we have: 

for all natural numbers k .  (Here we are using traditional mathematical no
tation, rather than the programming notation. The two notations may be 
mixed freely, as convenient, so long as no confusion arises.) 

Proof. The proof is by induction on k .  Let c = 1/.J5. 

Case O.  By simple calculation, we have: Fo = 0 = c( ¢o - �o) ,  which 
establishes the case. 

Case 1 .  Again by simple calculation, we have that FI = 1 = c( ¢I _ �I ) ,  
which establishes the case. 

Case (k + 2) . Assume that Fk = c(¢k - �k ) and FkH = c(¢k+I _ �kH );  
these are the induction hypotheses . Then we have that 

= Fk + FkH 
= c(¢k _ �k) + c(¢kH _ �kH) 
= c(¢k(1  + ¢) _ �k(1 + �)) 
= c( ¢k+2 _ �k+2) 

which establishes the case. 0 

(F.3) 
(hypothesis) 
( arithmetic) 
(¢2 = ¢ + 1 , �2 = � + 1)  

The induction principle used this time is a little different from the one used 
previously. Here, in order to show Pen) we show three things : 

Case O. That P(O) holds; and 

Case 1. That P(l) holds ; and 

Case (n + 2) .  That if Pen) and Pen + 1) hold, then Pen + 2) holds also. 
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This principle is valid by an argument similar to the one given previously. 
Recursion and induction are a sufficient basis on which to formulate a 

large proportion of mathematics, including most of the mathematics that we 
need for writing computer programs. For present purposes we are taking 
operations like addition and multiplication as primitives. But if need be, 
we could actually define them using recursion, taking only the forms 0 and 
( n  + 1) as primitives: 

O + n = 
(m + 1) + n 
O x  n = 
(m + 1) x n  = 

n 
(m + n) + l  
o 
(m x n) + n  

Using these definitions and induction, one could prove all the familiar prop
erties of arithmetic, such as that addition and multiplication are associative 
and commutative, and that multiplication distributes over addition. 

This concludes our review of recursive definition and inductive proof over 
the natural numbers. Recursive definitions and proof by induction both rely 
on the same case analysis, observing that each natural number must either 
be 0 or else have the form (n + 1) .  They are two sides of the same coin, 
and, to mix the metaphor, they fit together like a hand into a glove. In the 
following sections , we shall use recursion to define many useful functions , and 
induction to prove laws satisfied by the functions so defined. 

Exercises 

5 . 1 . 1  Using the recursive definitions of addition and multiplication of natural 
numbers given in Section 5 .1 ,  prove all or some of the following familiar 
properties of arithmetic: 

O f n  = n n + O  (+ has identity 0) 
1 X n = n = n x 1  ( x  has identity 1) 

m + n  = n + m  (+ commutative) 
k + (m + n) (k + m) + n  (+ associative) 

m x  n = n x m  ( x  commutative) 
k X (m X n) = (k  X m) X n ( x  associative) 
k x (m + n) = ( k x m) + (k x n) (+ distributes through x )  

for all natural numbers k ,  m, and n. 

5 . 1 . 2  Prove that : 
Fn+1Fn-l - (Fn)2 = (_1 )n 

Fn+m = FnFm+l + Fn-1 Fm 

for all natural numbers n :::: 1 and m :::: 0 ,  where Fm is the mth Fibonacci 
number. 
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5 .1.3 The binomial coefficient G;) denotes the number of ways of choosing k 
objects from a collection of n objects .  Here is a table of the values of (�) for 
o � n, k � 4: 

n\k 0 1 2 3 4 
0 1 0 0 0 0 
1 1 1 0 0 0 
2 1 2 1 0 0 
3 1 3 3 1 0 
4 1 4 6 4 1 

Observe that this table is essentially Pascal's Triangle shifted to the left and 
padded with zeros . Each element in the table (except for the edges) is the 
sum of the element immediately above it and the element above it and to the 
left . In the programming notation, we will write binom n k for (�) . 

a. Give a recursive definition of binom. 

b. Prove that if k > n then (�) = o.  

c. Rewrite the equation: 
E (;;) = 2n 

OSkSn 
in our programming notation. Prove that the equation is true for all 
natural numbers n. 

5.2 Recursion and induction over lists 

The principles of recursion and induction may be applied to lists as well as 
to natural numbers. For natural numbers , recursion and induction are based 
on two cases : every natural number is either 0 or else has the form (n + 1 )  
for some n. Similarly, recursion and induction on lists are also based on two 
cases : every list either is the empty list [ ]  or else has the form (x : xs) for 
some x and xs. 

Recall from Section 3.6 that ( : ) adds an element to the ffont of a list ,  so 
1 : 2 : 3 : [ ]  is equivalent to [1 , 2 , 3] .  Every list either is [ ]  or must have the 
form (x : xs) for some value x and some list xs. 

Here is an example of a recursive definition over lists. The operator (#) ,  
which finds the length of a list , can be  defined by: 

# [ ]  = 0 
#(x : xs) = l + (#xs) 

Just as 0 and (n  + 1) were used as patterns in definitions before, now we 
are using [ ]  and (x : xs) as patterns . Indeed, the notation was designed to 
allow such patterns precisely because they make it easy to write recursive 
definitions. 
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We can use these two equations to compute the length of the list [1, 2, 3] 
as follows:  

#[1 , 2 , 3] = 1 + (#[2, 3] )  
= 1 + ( 1  + (#[3] ) )  
= 1 + (1 + (1 + (#[ ])))  
= 1 + ( 1  + (1  + 0)) 
= 3 

(# .2) 
(# .2) 
(# .2) 
(#.1 )  

As a second example, here i s  the recursive definition of concatenation: 

For example: 

[ ]  * ys = ys 
(x : xs) * ys = x :  (xs * ys) 

[1 , 2] * [3, 4] = 1 :  ( [2] * [3 , 4] )  
= 1 :  (2 : ( [ ]  * [3 , 4] ) )  
= 1 :  (2 : [3, 4] )  
= [1 , 2 , 3 , 4] 

Induction adapts to lists as easily as recursion does. The principle of 
induction over lists is as follows.  To prove by induction that P(xs)  holds for 
any finite list xs one must show two things: 

Case [ ] .  That P( [ ] )  holds; and 

Case (x : xs) .  That if P(xs) holds, then P(x : xs) holds for every x .  

This i s  valid by an argument similar to  the one we used for natural numbers . 
We know by the first case that P([ ])  holds ; and so we know by the second 
case that P( [x] ) also holds for every x (since [x] is x : [ ]) ;  and so we know 
again by the second case that P([y ,  x]) also holds for every y and x (since 
[y, x] is y : [x] ) ;  and so on. Thus P(xs) holds for every finite list xs . It is 
easy to formalise this proof by inducting on the length of the list xs, so the 
principle of induction over lists is actually just a consequence of the principle 
of induction over natural numbers . 

In Chapter 3 we stated a number of laws without giving any proofs . Let 
us finally prove some of them. 

The first law we saw states that concatenation is associative, that is: 

xs * (ys * zs) = (xs * ys) * zs 

for every finite list xs, ys, and zs. 

Proof. The proof is by induction on xs. 

Case [ ] .  We have: 

[ ]  * (ys * zs) = ys * zs (*.1) 

which establishes the case. 

= ( [ ]  * ys) * zs (*.1)  
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Case (x : xs) .  We have: 

(x : xs) * (ys * zs) = x : (xs * (ys * zs)) (* .2) 

which establishes the case. D 

= x :  « u  * ys) * zs) (hypothesis) 
= (x : (xs * ys) )  * zs ( * .2) 
= « x : xs) * ys) * zs ( * .2) 
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The reader should consider why the induction in this proof is on xs , and not 
ys or zs .  

The next law we saw states that the identity element for concatenation 
is [ ] ,  that is : 

[ ]  * xs = xs * [ ]  = xs 

for every finite list xs . The first half of this law is part of the recursive 
definition of concatenation. The second half is an easy proof by induction on 
xs , and the pleasure of this proof will be left to the reader. 

To drive the idea of induction home, we will do one more proof. The next 
law we saw relates length and concatenation, namely: 

#(xs * ys) = (#xs) + (#ys) 

for every finite list xs and ys. 

Proof. The proof is by induction on xs . 

Case [ ] .  We have: 

#( [ ]  * ys) = #ys (*.1 ) 
0 + (#ys) (arithmetic) 

= (# [ ]) + (#ys) (#.1) 

which establishes the case. 

Case (x : xs) .  We have: 

#« x : xs) * ys) = #(x : (xs * ys)) (* .2) 
= 1 + (#(xs * ys))  (# .2) 
= 1 + (#xs) + (#ys) (hypothesis) 

(#(x : xs) )  + (#ys) (#.2) 

which establishes the case. D 

In mathematics , one writes down a proof in the way that looks most elegant, 
not the way one first discovers it . Both of the proofs above were discovered by 
a technique that can reduce many proofs to a simple exercise in calculation. 
Here is how the technique was applied to the (x : xs) case in the proof that 
concatenation is associative. What we wish to show is that : 

(x : xs) * (ys * zs) = « x : xs) * ys) * zs 
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This can be done as follows. First , we start with the left-hand side, and 
simplify it as much as possible: 

(x : xs) * (ys * zs) = x :  (xs * (ys * zs)) (*.2) 
x :  « xs * ys) * zs ) (hypothesis) 

Here "simplify" means that whenever the left-hand side of a definition (or 
of the induction hypothesis) matches a term or a part of a term, then it is 
replaced by the corresponding right-hand side. Second, we do the same thing 
to the right-hand side: 

« x : xs) * ys) * zs) = (x : (xs * ys)) * zs ( *.2) 
= x : « xs * ys) * zs) (*.2) 

Since the two results are the same, we have demonstrated the desired equality. 
The proof above was obtained by copying the first group of equations followed 
by writing the second group of equations in the reverse order. 

Thus, many proofs just require a proper choice of induction variable fol
lowed by an exercise in simplificatioll. This process is so simple that one 
might think it could be automated - and indeed it has been. A great deal 
of work has been done on automatic or machine-aided generation of proofs, 
and most of the systems for this have simplification of the sort described 
here at their core . The interested reader should consult Boyer and Moore [4] , 
Gordon et al [5] , or Paulson [6] for examples .  On the other hand, as we shall 
see, many proofs require insight and ingenuity for their completion . 

5.3 Operations on lists 

In this section we show how some of the list operations introduced in Chap
ter 3 can be defined formally by using recursion, and how some of the related 
laws can be proved using induction. The operators discussed are chosen in or
der to illustrate variations on the basic principles introduced in the preceding 
sections. Formal definitions of the remaining operators are left as exercises . 

5.3.1 Zip 

Recall that zip takes a pair of lists and returns a list of pairs . Here is its 
recursive definition: 

zip ( [ ] ,  ys) 
zip (x : xs , [ ] )  
zip (x  : xs , y : ys) 

= [ ]  
= [ ]  

( x ,  y )  : zip (xs,  ys) 

This definition obviously covers every possible combination of the two argu
ment lists .  Either: 

Case [ ] ,  ys . The first is empty; or 
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Case (x : xs) , [ ] . The first is non-empty and the second is empty; or 

Case (x : xs) , (y : ys) .  The first is non-empty and the second is non-empty. 

Thus , for every possible pair of lists , exactly one of the equations defining 
zip applies . 

This definition applies in just the way one would expect. For example : 

zip ( "ab" , [1 , 2 , 3] )  = ( 'a' , 1 ) : zip ( "b" , [2 , 3] )  
= ('a' , l) :  ( 'b' , 2) : zip ( "" , [3] )  
= ('a' , 1) : ('b ' , 2) : [ ] 
= [('a', 1 ) ,  ( 'b' ,  2)] 

(zip .3) 
(zip .3) 
(zip .2) 

Here "ab" is equivalent to ['a', 'b'] which is equivalent to ('a' : ('b' : [ ] ) . 
Notice the result list has the same length as the shorter of the two argument 
lists .  

It is easy to adapt our style of inductive proof to work with such patterns. 
We will demonstrate this by showing that :  

#zip (xs , ys) = (#xs) min (#ys) 

for every finite list xs and ys. 

Proof. The proof is by induction on both xs and ys . 

Case [] , ys.  We have: 

#zip ( [ ] ,  ys) = #[ ] 
= 0 

(zip. 1) 
(#.1 )  

= o min (#ys)  

since 0 min n = 0 for every natural number n. This establishes the case. . 

Case (x : xs), [ ] . We have: 

#zip (x : xs, [ ] )  = #[ ] 
= 0 

(zip.2) 
(#.1) 

= #( x : xs) min 0 

since n min 0 = 0 for every natural number n. This establishes the case. 

Case (x : xs),  (Y : ys) .  We have: 

#zip (x : xS, Y : ys) 
= #«x , y) : zip (xs , ys» 
= l + #zip (xs , ys) 
= 1 + (#xs min #ys) 
= ( l + #xs) min (l + #ys) 
= #(x : xs) min #(y : ys) 

which establishes the case. 0 

(zip.3) 
(#.2) 
(hypothesis) 
(+ distributes through min) 
(#.2) 
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This inductive proof is valid because, as was observed before , the three cases 
( [ ] , ys) ,  (x : xs , [ ] ) ,  and (x : xS , y : ys) cover every possible combination of 
two lists. Formally, one can justify this sort of "double induction" as two 
nested inductions. Here the outer induction is on xs , and the inner induction 
is on ys. 

Rather than the definition above, one might be tempted to give the fol
lowing definition of zip instead: 

zip ( [ ] ,  ys) = [ ]  
zip (xs ,  [ ] ) = [ ]  
zip ( x  : xs , y : ys) = ( x ,  y) : zip (xs ,  ys) 

However, this definition is illegal in the notation used in this book, because 
it is ambiguous. Given the term zip ( [ ] ,  [ ] ) ,  either the first equation or the 
second equation might apply. In this case both equations happen to yield 
the same result, [ ] ,  but we cannot guarantee this for all definitions. So it is 
required that in every definition at most one equation must apply for every 
possible choice of arguments .  

Perhaps the reader thinks the second, illegal, definition i s  better, because 
it is more symmetric. In fact the function zip is not symmetric. On any 
sequential computer, evaluating zip (xs ,  ys) will require examining either xs 
first or ys first. A fundamental law of computation is that any process that 
examines the value 1. must return the value 1. .  It is clear from the legal 
definition that evaluation of zip (xs ,  ys) examines xs first, and if xs is [ ] then 
ys is not examined. Thus, the term zip (1. , [ ] )  has the value 1., since no 
equation in the legal definition applies , while the term zip ( [ ] ,  1.) has the 
value [ ] ,  by equation (zip.1) .  For the illegal definition to be valid, both 
zip (1. ,  [ ] )  and zip ( [ ] ,  1.) would have to return the value [ ] ,  but it is not 
possible to obtain this behaviour using sequential computation. This is why 
it was chosen to make the second definition illegal. 

5 .3.2 Take and drop 

Recall that take and drop each take a natural number n and a list xs as 
arguments .  The value of ( take n xs) is the first n elements of xs (or all of 
xs if n > #xs) ,  and the value of ( drop n xs) is xs with the first n elements 
removed, (or [ ]  if n > #xs) .  These functions can be defined recursively as 
follows: 

take 0 xs = [ ]  
take (n  + 1) [ ]  = [ ]  
take (n  + 1 )  (x : xs) x : take n xs 

drop 0 xs = xs 
drop (n  + 1) [ ]  = [ ]  
drop (n  + 1 )  (x : xs) = drop n xs 
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Again, these definitions cover every possible combination of the two argu
ments .  

An important law relating take and drop is that: 

take n xs * drop n xs = xs 

for every natural number n and finite list xs. Using the methods developed 
so far, the following proof is straightforward.  

Proof. The proof is by induction on n and xs. 

Case 0 ,  xs . We have: 

take 0 xs * drop 0 xs = [ ]  * xs ( take .l ,  drop.l)  

which establishes the case. 

Case (n + 1) ,  f l . We have: 

= xs (*.1)  

take (n + 1) [ ]  * drop (n + 1) [ ]  = [ ]  * [ ]  ( take .2, drop.2) 

which establishes the case. 

Case (n + 1 ) ,  (x : xs) . We have: 

= [ ]  (*.1)  

take (n + 1)  (x :  xs) * drop (n  + 1) (x :  xs) 
= (x :  take n xs) * drop n xs ( take .3, drop.3) 
= x :  ( take n xs * drop n xs) (*.2) 
= x :  xs (hypothesis) 

which establishes the case. 0 

Observe that take 0 .1.  = [ ]  by ( take .l) ,  whereas take .l. [ ]  = .1. since no 
equation applies; and similarly for drop. In particular, we have: 

which does not satisfy the law proved above. When we use induction to prove 
a law "for every natural number n" this does not cover the possibility that 
n is .1. .  If we wish to cover this possibility, it must be included in the proof 
as an additional case. Similarly, the case that a list variable may be .1. must 
also be treated separately; and we shall see examples of this in Chapter 7 
when we discuss how to prove properties of infinite lists. 
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5.3.3 Head and tail 

The function hd selects the first element of a list , and tl selects the remaining 
portion. These can be defined by a simple case analysis ,  without any need 
to resort to recursion, as follows :  

hd (x : xs)  = x 
tl (x : xs) = xs 

No equation is provided defining hd [ ]  or tl [ ] ,  so these both take the value 
l.. 

We have already seen the law: 

[hd xs] * tl xs = xs 

for every non-empty finite list xs. 

Proof. The proof is by case analysis on xs . 

Case (x  : xs) . We have: 

[hd (x : xs)] * tl (x : xs) = [x] * xs (hd .1 , tl .1) 

which establishes the case. 0 

= x : xs (*.2, *.1) 

The case for [ ]  was not included because it is given that xs is non-empty. 
This simple proof requires only a trivial case analysis , but no induction. 

5.3.4 Init and last 

These functions are similar to head and tail, but they select the initial seg
ment of the list and its last element . We can define these using recursion, as 
follows: 

init [x] = [ ]  
init (x : x' : xs) = x : init (x' : xs) 

last [x] = x 
last (x : x' : xs) = last (x' : xs) 

Here the two cases cover the possibility that the argument list has length one 
or the argument list has length two or greater. 

The initial segment of a list can be formed by taking the first n - 1 
elements of the list , where n is its length; that is: 

init xs = take (#xs - 1) xs 

for every non-empty finite list xs. 
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Proof. The proof i s  by induction on xs . The two cases considered are [z] 
and (:& : :&' : xs). This case analysis is valid, since every non-empty list must 
have one of these two forms. 

Case [z] . We have that : 

init [:&] = [ ]  ( init .1) 
= take O [z] ( take .1) 
= take (#[z] - 1) [z] (# .1 , # .2) 

which establishes the case. 

Case (:& : :&' : xs) .  For the induction hypothesis,  assume that : 

init (z' : Z8) = take ( #( Zl : xs) - 1) (Zl : xs) 

This is valid, since the list (Z' : Z8) is shorter than the list (z : Zl : Z8) .  Then 
we have: 

init (z : (Zl : xs» = z :  init (Zl : Z8 ) 
= z :  take (#(Zl : xs) - 1) (Z/ : xs) 
= z :  take (#xs) (x' : Z8) 
= take (#Z8 + 1) (z : Zl : Z8) 
= take (#( z : Zl : Z8) - 1) (z : Zl : Z8) 

which establishes the case. 0 

Again, the reader may be tempted to write: 

init [z] = [ ] 
init (x : Z8) = z :  init xs 

( init .2) 
(hypothesis) 
(# .2) 
( take .3) 
(# .2) 

for the definition of init . And, again, this is illegal in the notation used in 
this book.  In particular, init [z] can be reduced in two ways: it reduces to [ ] 
by the first equation, and reduces to z : init [ ] by the second equation (since 
[z] is (z : [ l ) ) .  

5 . 3 . 5  Map and filter 

The function map applies a function to each element of a list , and the function 
filter removes elements of a list that do not satisfy a predicate. They may 
. be defined recursively as follows : 

map f ( ]  = [ ]  
map ! (z : u) = ! z :  map ! xs 
filter p [ ]  = [ ] 
filter p (z : xs ) = :& : filter p xs , if p x 

= filter p :&8 , otherwise 
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The new elements we have here are higher-order functions and conditionals 
in a recursive function definition. 

For example, we have: 

filter odd ( map square [2, 3] ) 
= filter odd (4 : map square [3] ) 
= filter odd (map square [3] ) 
= filter odd (9 : map square [ ] ) 
= 9 :  filter odd (map square [ ] ) 
= 9 :  filter odd [ ]  
= 9 :  [ ]  

(map.2) 
(filter.3) 
(map.2) 
(filter.2) 
(map.1)  
(filter. 1) 

= [9] 

One law satisfied by map and filter is: 

filter p (map f xs) = map f (filter (p . f )  xs) 

for any function f,  total predicate p,  and finite list xs. (A predicate p is total 
if for every x the value of p x is always True or False and never 1..)  
Proof. The proof i s  by induction on xs. The two cases are [ ]  and (x  : xs ) . 
In the latter case, we will be interested in whether (p (f x» is True or False, 
so we consider these cases separately. 

Case [ ] .  We have: 

filter p (map f [ ] ) = filter p [ ]  
= [ ]  
= map J [ ]  
= map f (filter (p . J) [ ] ) 

(map.1) 
(filter. 1) 
(map.1) 
(filter. 1) 

which establishes the case. 

Case (x : xs) ,  (p (f x)) = True. We have: 

filter p (map f (x : xs)) = filter p (f x :  map f xs) 
= f x :  filter p (map f xs) 

which establishes the case. 

= f x :  map f (filter (p . J) xs) 
= map f (x : filter (p . J) xs) 
= map f (filter (p . J) (x : xs» 

Case (x : xs) ,  (p (f x)) = False. We have: 

filter p (map f (x : xs » = filter p (f x : map f xs) 
= filter p ( map f xs) 
= map f (filter (p . J) xs) 
= map f (filter (p . J) (x : xs» 

which establishes the case. 0 

(map.2) 
(filter.2) 
(hypothesis) 
(map.2) 
(filter. 2) 

(map.2) 
(filter.3) 
(hypothesis) 
(filter. 3) 
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The above proof considered two possibilities for the value of (p (f x ) ) , namely 
that it is True or False. This suffices if the predicate p is total. Otherwise, 
we must consider one additional case, namely, (p (f x)) = 1.. This case is left 
as an exercise. 

5 . 3 . 6  Interval 

The special form [m . .  n] denotes the list of numbers from m to n. We can 
give a recursive definition of the function interval, where: 

interval m n = [m . .  n] 

in the following way: 

interval m n [ l ,  if m >  n 
= m :  interval (m + 1) n, otherwise 

Here, the two cases are distinguished by testing the condition m > n, rather 
than by the use of pattern matching. The value ( interval m n) is well defined 
for all m and n because the quantity n - m decreases at each recursive call. 

Reasoning about interval requires the following principle of induction. 
We may prove that a proposition P( m, n) holds for every integer m and n 
by showing two things: 

Case m > n. That P( m, n) holds when m > nj and 

Case m � n. That if P{m + 1 ,  n) holds , then P(m, n) holds when m � n. 

This principle may be justified by induction (over natural numbers) on the 
quantity n - m + 1. Because of this, we will refer to this method of proof as 
induction on the difference between n and m. 

We can now prove the useful law: 

map (k+) ( interval m n) = interval (k  + m) (k  + n) 

for every integer k, m, and n. 

Proof. The proof is by induction on the difference between m and n. Both 
cases make use of the fact that k + m > k + n if and only if m > n. 

Case m > n. We have: 

map (k+ ) ( interval m n) 
= map (k+) [ ] 
= [ ]  
= interval (k  + m) (k  + n) 

which establishes the case. 

( interval . 1 ) 
(map.I )  
( interval. 1 ) 
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Case m � n. We have: 

map (k+ ) ( interval m n) 
= map (k+) (m : interval (m + 1) n) 

k + m : map (k+ ) ( interval (m + 1) n) 
k + m : interval (k + m + 1) (k  + n) 

= interval (k  + m) (k + n) 

which establishes the case. 0 

( interval .2)  
(map.2) 
(hypothesis) 
( interval.2) 

We can generalise the induction principle above to apply when m and n 
are any numbers , not just integers, and for an arbitrary increment i . Namely, 
for any positive number i we may prove that P( m, n) holds for any numbers 
m and n by showing: 

Case m > n. That P( m, n) holds when m > n; and 

Case m � n. That if P( m + i ,  n) holds , then P( m, n) holds when m � n. 

This principle may be justified by induction (over natural numbers) on the 
quantity L(n - m)/iJ , where LxJ is the largest integer j such that j � x .  

Applying this principle shows that the. law above holds for any numbers k ,  
m, and n, not just integers. 

Exercises 

5.3 .1  Give a recursive definition of the index operation (xs !  i) . 

5.3 .2  Give recursive definitions of takewhile and dropwhile. 

5.3.3 Prove the laws 

init (xs * [x]) = xs 
last (xs * [x] ) = x 

xs = init xs * [last xs] 

for every x and every (non-empty) finite list xs .  

5 .3.4 Prove the laws: 

take m (drop n xs) = drop n ( take (m + n) xs) 
drop m (drop n xs) = drop (m + n) xs 

for every natural number m and n and every finite list xs . 

5.3.5 Prove the laws : 

map (f . g) xs = map f (map 9 xs) 
map f ( concat xss) = concat (map (map f) xss) 

for every function f and g, finite list xs , and finite list of finite lists xss . 
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5 .3.6 Prove the law: 

takewhile p xs * dropwhile p xs = xs 

for every total predicate p and finite list xs . 

5 .3.7 Prove the laws: 

(xs * ys) ! i = 
(xs * ys) ! i 

xs ! i ,  if i < #xs 
ys ! (i - #xs) ,  if i � #xs 
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for every finite list xs and ys and every natural number i .  (Hint: The second 
law will be easier to prove if it is rewritten in terms of j ,  where j = i - #xs . )  

5 .3.8 Let interval1 stand for the special form [ 1  . .  n] . Show that the defini
tion: 

interva11 0 
interval1 (n + 1) 

= [ ] 
= 1 :  map ( + 1) (interval1 n) 

follows from the definition of interval and the law given in the text . 

5 .3.9 Prove that if k ::5: m ::5: n then: 

interval k m * interval ( m + 1) n = interval k n 

for every integer k ,  m, and n. Is the same law valid if k ,  m, and n are not 
restricted to integers? Explain why. [Hint: An obvious decomposition is to 
use the cases k > m and k ::5: m. This turns out not to be helpful, since we 
are given that k ::5: m in the statement of the law. Use the cases k + 1 > m 

and k + 1 ::5: m instead.] 

5.3 .10 Let ( interval3 a b c) stand for the special form [a, b . .  c] . Give a 
recursive definition of interval3 . 

5.4 Auxiliaries and generalisat ion 

Sometimes , instead of defining a function or proving a theorem directly, it 
is convenient or necessary to first define some other function or prove some 
other result . In other words , we may need to consider auxiliary definitions 
or theorems. In other situations, we can sometimes make our task easier 
by trying to define a more general function or prove a more general result . 
In other words, we may need to generalise definitions or theorems. In this 
section we shall look at some examples of these techniques . 



122 RECURSION AND INDUCTION 

5 . 4 . 1  List difference 

The value of xs -- ys is the list that results when, for each element y in ys , 
the first occurrence (if any) of y is removed from xs . A recursive definition 
of list difference is: 

xs -- [ ]  = xs 
xs - - (y : ys ) = remove xs y - - ys 

remove [ ]  y [ ] 
remove (x : xs) y = xs, if x = y 

x : remove xs y ,  otherwise 

Here it is convenient to define (- - ) using an auxiliary function, remove . The 
value of remove xs y is the result when the first occurrence (if any) of y is 
removed from xs. Thus, remove corresponds exactly to one phrase in the 
English language description of xs -- ys given above. 

An important law about list difference is that : 

(xs * ys) - - xs = ys 

for every finite list xs and ys . The proof of this law is straightforward using 
the techniques described in the previous sections, and is left as an exercise. 

5 . 4 . 2  Reverse 

One way to define the function that reverses the elements of a list is as follows: 

reverse [ ]  = [ ]  
reverse ( x  : xs) = reverse xs * [x] 

Let us now prove that : 

reverse ( reverse xs) = xs 

for every finite list xs. 

Proof. The proof requires an auxiliary result , namely that : 

reverse (ys * [xl ) = x : reverse ys 

for every x and every finite list ys . We will first prove the auxiliary result , 
and then prove the main result . The auxiliary is proved by induction on ys . 

Case f l .  We have: 

reverse ( [ l  * [xl ) = [xl = x : reverse [ l  

which establishes the case. 
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Case (y : ys) . We have: 

reverse (y : ys * [x l ) 

which establishes the case. 

= reverse (ys * [xl ) * [y] 
= x :  reverse ys * [y] 
= x :  reverse (y :  ys ) 

( reverse .2) 
(hypothesis) 
( reverse.2) 
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Here we have simplified the proof a little. For example, we have written 
(y : ys * [xl ) for both «y : ys) * [xl) and (y : (ys * [x] ) ) , which is valid by 
(*.2) . By now the reader should be familiar with the basic proof techniques , 
so that this simplification causes no confusion. 

Having proved the auxiliary, we now turn to the proof of the main result. 
The proof is by induction on xs .  

Case [ ] .  We have: 

reverse (reverse [ ] )  = reverse [ ]  = [ ]  

which establishes the case. 

Case (x : xs) . We have: 

reverse (reverse (x : xs)) = reverse ( reverse xs * [x] ) 
= x :  reverse ( reverse xs) 
= x :  xs 

which establishes the case, and completes the proof. 0 

( reverse .2) 
( auxiliary) 
(hypothesis) 

In the main proof, the only place that the auxiliary result was used was to 
demonstrate that : 

reverse (reverse xs * [x] ) = x : reverse (reverse xs) 

Trying to prove this result directly does not work, as the reader may ver
ify. This is where generalisation comes in. By replacing the subexpression 
reverse xs with a new variable ys we get a more general result , which is easier 
to prove. Indeed, as we saw above, the proof of the generalised result is now 
straightforward.  

How does one decide when an auxiliary result is needed, and how to 
strengthen a potential auxiliary result? There are no hard and fast answers 
to these questions, which is why constructing programs and proofs can be an 
interesting and challenging task. However, the suggestions that follow may 
be useful. 

One way to discover the auxiliary result is by intuition. Since (x : xs) is 
equivalent to ( [x] * xs) we might choose to rewrite (reverse .2) in the form: 

reverse ( [x] * xs ) = reverse xs * [x] 
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in order to emphasise the similarity. From here it is a small leap to conjecture 
that :  

reverse (xs * [xD = [x ]  * reverse xs 

and this is the required auxiliary result. 
We can also discover this result in a different way, by extending the 

method of discovering a proof described in Section 5.2 .  There we saw that a 
proof can be constructed by a combination of induction and simplification. 
We start with the equation: 

reverse (reverse xs) = xs 

and apply this technique. First , replace xs by (x : xs) .  Next , simplify the 
left-hand side by applying (reverse.2) and the right-hand side by applying 
the induction hypothesis . This yields: 

reverse (reverse xs * [x] ) = x : reverse ( reverse xs) 

which is our potential auxiliary result . As mentioned above, it is difficult to 
prove this result directly, so it needs to be strengthened. A standard method 
of generalisation is to look for a sub-expression that appears on both sides of 
the equation and replace it by a variable. A sub-expression that appears on 
both sides of the above is reverse xs , and we have already seen that replacing 
this by the variable y gives the equation: 

reverse (ys * [xD = x : reverse ys 

which is just what is wanted. This method of simplification followed by 
generalisation is used by some automated theorem proving systems (see, for 
example, Boyer and Moore [4] ) .  

5.4.3 Second duality theorem 

Recall that the informal definitions of fold left and fold right were as follows:  

foldr (ffi) a [XI , X:! , • • •  , xn] = Xl ffi (X:! ffi ( . . .  (xn ffi a) · ·  .) )  
foldl (ffi) a [XI ,  X:! , • • •  , :en] = ( . . .  (( a ffi Xl ) ffi X:!) • • •  ) ffi xn 

The equivalent formal definitions are: 

foldr (ffi) a [ ]  = a 
foldr (ffi) a (x : xs) = x ffi (Joldr (ffi) a xs) 

foldl (ffi ) a [ ]  = a 
foldl (ffi) a (x : xs) = foldl (ffi) (a ffi x)  xs 

The reader should take a moment to check that the formal definitions do 
indeed correspond to the informal definitions. 
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The second duality theorem (see Section 3.5 .1) is as follows :  let (ffi) and 
(® ) be two binary operators and a a value such that : 

x ffi (Y ® z) = (x ffi y) ® z  (i) 
x ffi a = a ® x (ii) 

for every x ,  y ,  and z .  Then: 

foldr (ffi ) a xs = foldl (® ) a zs 

for every finite list zs . 

Proof. The proof requires an auxiliary result , namely that : 

x ffi foldl (® ) y xs = foldl (® ) (x ffi y) xs 

for every x and y and every finite list xs . We will first prove the auxiliary 
result , and then prove the main result . The auxiliary is proved by induction 
on xs . 

Case [ ] . We have: 

x ffi foldl (® ) y [ ]  = x ffi y (foldl. 1) 
= foldl ( ® ) (  x ffi y) [ ] (foldl. 1 ) 

which establishes the case. 

Case (x' : xs ) . (To avoid confusion with the variable x that is already part 
of the formula, we replace xs by (x' : xs) instead of (x :  zs) .) We have: 

x ffi foldl ( ®) y (x' : xs) x ffi foldl ( ® ) (y ® x') zs 
= foldl (® ) (  x ffi (y ® x' ) )  xs 
= foldl (®) (( x ffi y) ® x') xs 
= foldl ( ®) (x ffi y) (x' : xs) 

(foldl .2) 
(hypothesis) 
(i) 
(foldl .2) 

which establishes the case. Note that the hypothesis applies here because it 
holds for any y ;  in this case, y matches the term (y ® x') . 

Having proved the auxiliary, we now turn to the proof of the main result . 
The proof is by induction on zs . 

Case [ ] . We have: 

foldr (ffi ) a [ ]  = a = foldr (® ) a [ ]  

by (foldl. 1 ,  foldr.1) ,  which establishes the case. 
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Case (x : xs) .  We have: 

foldr ( EB) a (x : xs) = x EB foldr ( EB) a xs 
= x EB foldl ( 159) a xs 
= foldl (®) (x EB a) xs 
= foldl (®) ( a  159 x) xs 
= foldl (159) a (x : xs) 

(Joldr.2) 
(hypothesis) 
( auxiliary) 
(ii) 
(Joldl.2) 

which establishes the case, and completes the proof. 0 

In the main proof, the only place that the auxiliary result was used was to 
demonstrate that : 

x EB foldl ( 159) a xs = foldl ( 159 ) (x EB a) xs 

This was generalised by replacing the value a by the variable y.  One might 
expect that this would make the proof harder, because there is a property 
of a that might be used in the proof (namely, it satisfies law (ii) above) but 
y has no special properties . But in fact it makes the proof easier because 
it makes the induction hypothesis more widely applicable. In the proof of 
the auxiliary result given above, the induction hypothesis was invoked with y 
replaced by (y 159 x') ,  and this was possible exactly because we had generalised 
the auxiliary. 

5 .4.4 Fast reverse 

The next example again involves the reverse function, and is motivated by 
considerations of efficiency. 

We can think of a computation as consisting of a number of reduction 
steps, where each reduction step consists of applying one equation in the 
definition of a function. For example, computing [3 , 2] * [1] requires three 
reduction steps: 

[3 , 2] * [1] 3 : ( [2] * [1] ) 
= 3 : (2 : ( [ ] * [1] ) )  
= 3 : (2 : [1]) 
= [3 , 2 , 1] 

The last line is not a reduction step; it is just a different way of writing 
down exactly the same structure. (Inside the computer, both 3 :  (2 : [1] ) and 
[3 , 2 , 1] are represented as 3 : (2 : (1 : [ ] ) ) . )  In general, if xs has length n then 
computing xs * ys will require n reductions by (* .2) followed by a single 
reduction of (*.1 ) ;  so the number of reduction is roughly proportional to n. 
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Similaxly, computation of reverse [1 , 2 , 3] requires ten reduction steps: 

reverse [1 , 2, 3] = reverse [2, 3] * [1] (reverse. 2) 
= (reverse [3] * [2] ) * [1] (reverse .2) 
= « reverse [ ]  * [3] ) * [2]) * [1] (reverse.2) 
= «[ ]  * [3] ) * [2] )  * [1] (reverse .1) 
= ( [3] * [2] ) * [1] (*.1)  
= [3 , 2] * [1] (*.2, * .1)  
= [3 , 2 , 1] (*.2, * .2 , *.1 )  

:6t general, i f  xs  has length n then computing reverse xs will require n re
ductions by (reverse .2) , followed by one reduction by (reverse .l) , followed 
by: 

1 + 2 + . . .  + n = n(n - 1) 
2 

reduction steps to perform the concatenations, so the number of reduction 
steps is roughly proportional to n2 • 

It would be better to be able to compute reverse xs with a number of 
reduction steps that is proportional to n rather than to n2 • The following 
program has this performance: 

rev xs = shunt [ ]  xs 

shunt ys ( ]  = ys 
shunt ys (x : xs) = shunt (x : ys) xs 

The definition uses an auxiliary function shunt . This definition is equivalent 
to the previous one. That is, we can prove that : 

rev 1:S = reverse xs 

for every list xs .  In order to prove this, we will need to prove an auxiliaxy 
result about the auxiliary function, namely that: 

shunt ys xs = reverse xs * ys 

for every finite list 1:S and ys . The proof is a straightforwaxd induction on xs 
and is left to the reader. 

For example, rev [1, 2 , 3] is computed as follows:  

rev [1, 2 , 3] = shunt [ ]  [1 , 2 , 3] (rev .1) 
= shunt [1] [2, 3] (shunt .2) 
= shunt [2 , 1] [3] (shunt .2) 
= shunt [3 , 2 , 1] [ ]  (shunt .2) 
= [3, 2, 1] (shunt .1)  

It is easy to see that computing rev xs requires n + 2 reduction steps, where 
n is the length of 1:S . 
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The key to the improvement in performance is to solve a harder problem. 
The auxiliary function call shunt ys xs doesn't just reverse the list xs , it 
also concatenates it to the list ys. This is a useful thing to do because in the 
original definition, reverse (x : xs) reduces to reverse xs * [x] .  Combining the 
reverse operation with concatenation is what allows for the greater efficiency. 

5.4.5 Fast Fibonacci 

Again motivated by efficiency concerns, we now consider an efficient way of 
computing Fibonacci numbers . 

The function fib n, which returns the nth Fibonacci number, was defined 
previously as follows: 

fib 0 
fib 1 

= 0 
= 1 

fib (n  + 2) = fib n + fib (n + 1) 

How many reduction steps does it take to compute fib n? If we write T(n) 
for the number of reduction steps to compute fib n (the T stands for "time" ) ,  
then the above definition implies the following: 

T(O) = 1 
T(l) = 1 

Ten + 2) = T(n) + T(n + 1) + 1 

The first two equations state that computing fib 0 or fib 1 requires a single 
reduction step, and the third equation states that computing fib (n  + 2) 
requires the steps to compute fib n and the steps to compute fib ( n + 1)  and 
one more step (to apply the rule (fib .3) initially) . Solving these equations 
gives T( n) = 2 X fib (n + 1) - 1, which is easy to verify by induction. Thus , 
the number of reduction steps to compute fib n is roughly proportional to the 
value of fib n. 

It is preferable to compute fib n in only n steps. The following definition 
does so: 

fastfib n 

two fib 0 
twofib (n + 1) 

= fst ( twofib n) 

(0, 1) 
= ( b, a + b) 

where (a ,  b) = twofib n 
The key to understanding this definition is the fact : 

twofib n = (fib n,fib (n + 1)) 

which is easy to prove by induction, and from which it follows immediately 
that fast fib n = fib n for every natural number n. Here the key to efficiency is 
again to solve a harder problem. Rather than just compute fib n, it is more 
efficient to compute fib n and fib (n + 1) at the same time. 
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Exercises 

5 .4.1 Prove that : 
(xs * ys) -- xs = ys 

for every finite list xs and ys . 

5 .4.2 Prove that : 

reverse (xs * ys) = reverse ys * reverse xs 

for every finite list xs and ys . 

5 .4.3 Prove that : 

foldr f a  (xs * ys) = foldr f (Joldr f a ys) xs 

for every function f, value a, and finite list xs and ys . 

5 .4.4 Prove that if J x y = f y x for every x and y ,  then: 

foldr f a xs = foldl J a ( reverse xs) 

for every function f, value a, and finite list xs . 

5 .4.5 Let ffi be associative with identity a, and define h by: 

Prove that: 

h = foldr ( ffi) a 

h (xs * ys) = (h  xs) ffi (h ys) 
h ( concat xss) = h ( map h xss) 

for every finite list xs and ys and every finite list of finite lists xss. 

5.5  Program synt hesis 

129 

In program proof, we begin by giving a program, and then demonstrate that 
it satisfies some property. In program synthesis ,  we begin by giving a specifi
cation, and then synthesise a program that satisfies it . Since a specification is 
simply a property we require a program to satisfy, these activities are clearly 
related. 

Both methods require essentially the same reasoning. Often a proof can 
be converted into a synthesis just by changing the order of a few steps, and 
vice versa. But in program proof we must , as it were, create appropriate 
definitions out of thin air , whereas in program synthesis the definition is 
constructed in a systematic way. Thus synthesis is preferable when it can be 
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used. Here, we show how two of the inductive proofs considered previously 
can be recast as syntheses of recursive definitions. 

Initial segment . In Section 5.3.4, we saw a recursive definition of init , 
which was followed by a proof of the law that : 

init xs = take (#xs - 1) xs 

for every non-empty finite list xs. We will now turn things around, and show 
how the recursive definition can be synthesised, taking the above equation as 
a specification. 

The synthesis is by instantiation of xs . The two cases considered are [xl 
and (x : x' : xs) .  This is valid since every non-empty list must have one of 
these two forms. 

Case [x] . We have: 

init [x] = take (#[x] - 1) [x] (instantiation) 
= [ ]  ( # ,  take) 

which gives the first equation. 

Case (x : x' : xs) .  We have: 

init (x : x, : xs) 
= take (#(x : x' : xs) - l) (x : x' : xs) 
= take (#xs + 1) (x : x' : xs) 
= x :  take (#xs)  (x' : xs) 
= x :  take (#(x' : xs) - 1) (x' : xs) 
= x :  init (x' : xs) 

which gives the second equation. 

Collecting the equations together we have: 

init [x] = [ ]  

(instantiation) 
(# .2 , arithmetic) 
( take.3) 
( # .2 ,  arithmetic) 
(hypothesis) 

init (x : x' : xs) = x :  init (x' : xs) 

which is, of course, the same definition given previously. 
There are many similarities between the proof given in Section 5.3 .4 and 

the synthesis given here. Both use the same case analysis , and examination 
shows that the same equations with (essentially) the same justifications ap
pear in both, though in a different order. Furthermore, both are equally 
hard - or easy - to construct . This makes the synthesis something of a bar
gain, since instead of requiring us to specify the recursive definition of init 
in advance, it yields the definition as the result of systematic reasoning. 

Also, note that (with one exception) each line of the above synthesis is 
derived by simplifying the previous line. The exception is the second to 
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last line, where (#zs) is changed to (#(z' : :ca) - 1) ,  in order to provide 
a better ''fit'' against the given specification. Thus, as with many proofs, 
many syntheses consist of a proper choice of case analysis ,  followed (mainly) 
by simplification. 

Fast Fibonacci. In Section 5.4.5, we saw a definition that can be used 
to compute }ib n, the nth Fibonacci number, in about n steps, whereas the 
traditional definition requires about fib n steps. The key idea was to define 
a function twofib such that : 

two fib n = (fib n,fib (n  + 1)) 

This allows for improved efficiency because one has available the value of two 
successive Fibonacci numbers when calculating the next one. 

Previously the definition of twofib was given and it was asserted that it 
was easy to prove the above equation from the definition. Clearly, it would 
be better to start with the equation, and then synthesise a definition of two fib 
that satisfies it. That is what we shall do now. 

The synthesis is by instantiation of n. 

Case O.  We have: 

twofib 0 = (fib O ,fib 1) (instantiation) 
= (0, 1 )  (fib.l ,fib.2) 

which gives the first equation. 

Case (n  + 1 ) .  We have: 

twofib (n + 1) = (fib (n  + l) ,fib (n + 2)) 
= (fib (n  + l) ,fib n + fib (n + 1)) 
= ( b , a + b) 

where (a ,  b) = (fib n,fib (n  + 1)) 
= ( b , a + b) 

where (a ,  b) = two fib n 

which gives the second equation. 

(instantiation) 
(fib.3) 
(rearrangement) 

(hypothesis) 

Gathering the two equations together with the definition of fast fib, we have: 

fastfib n 

two fib 0 
twofib (n + 1)  

= fst ( twofib n) 

= (0, 1 )  
= ( b, a + b) 

where (a, b) = twofib n 

just as before. It follows immediately from the initial law that fastfibn = fibn, 
as required. 
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Exercises 

5.5 .1  Synthesise the recursive definition of concatenate from the specifica
tion: 

xs * ys = foldr ( : ) ys xs 
for every finite list xs and ys . 

5.5 .2 Synthesise the recursive definition of length from the specification: 

#xs = sum (map (const 1) xs) 

for every finite list xs . Do this once taking sum = foldr( + )0 , and again taking 
sum = foldl (+) o. (Hint: The second case requires an auxiliary function. ) 

5 .5 .3 The association list function assoc is defined as follows: 

assoc xys x = hd [y I (x', y )  - XYSj x, = x] 

Synthesise a recursive definition of assoc. (Hint: First translate the list 
comprehension in the definition of assoc to be in terms of map and filter , 
using the method in Section 3.4.) 

5 .5 .4 Synthesise the recursive definitions of list subtraction and remove from 
the specification: 

xs - - ys = foldl remove xs ys 
remove xs y = takewhile (i' y) xs * drop 1 ( dropwhile (i' y) xs) 

for every y and every finite list xs and ys . 

5.5.5 Synthesise the recursive definitions of take and drop from the specifi
cation: 

take n xs * drop n xs = xs 
#( take n xs) = n min (#xs)  

for every natural number n and every finite list xs . 

5.6 Combinatorial functions 

Many interesting problems are combinatorial in nature, that is , they involve 
selecting or permuting elements of a list in some desired manner. This section 
describes several combinatorial functions of widespread utility. 

Initial segments. The function inits returns the list of all initial segments 
of a list , in order of increasing length. For example: 

? inits "era" 
["" "e" "er" "era" ] , , , 
? map sum ( inits [1 . .  5]) 
[0, 1 , 3 , 6 , 10 , 15] 
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Notice that : 
scan f a xs = map (foldl f a) ( inits xs ) 

provides one way to define the scan operation. IT xs has length n, then initsxs 
will have length n + 1 .  

A recursive definition of inits is: 

inits [ ]  = [ [ I I 
inits (x : xs) = [ [ ] ] * map (x : ) ( inits xs) 

The empty list has only one initial segment , namely itselfj hence the first 
equation. A non-empty list (x : xs) will still have the empty list as an initial 
segment , and its other initial segments will begin with an x and be followed 
by an initial segment of XS j hence the second equation. 

Subsequences. The function subs returns a list of all subsequences of a list . 
For example: 

? subs "era" 
[ '''' "a" "r" "ra" "e" "ea" "er" "era" ] , , , , , , , 

The ordering of this list is a consequence of the particular definition of subs 
given below. IT xs has length n, then subs xs has length 2n . This can be seen 
by noting that each of the n elements in xs might be either present or absent 
in a subsequence, so there are 2 X . . • X 2 (n times) possibilities . 

A recursive definition of subs is: 

subs [ ]  
subs (x : xs) 

= [ [ l l 
= subs xs * map (x : )  (subs xs) 

That is, the empty list has one subsequence, namely itself. A non-empty 
list (x : xs) has as subsequences all the subsequences of xs , together with 
those sequences formed by following x with each possible subsequence of xs . 
Notice that this definition differs from that of inits in only one place, but has 
a considerably different meaning. 

Interleave. The term interleave x ys returns a list of all possible ways of 
inserting the element x into the list ys. For example: 

? interleave 'e' "ar" 
["ear" , "aer" , "are" ] 

IT ys has length n, then interleave x ys has length n + 1 .  
A recursive definition of interleave is: 

interleave x [ ]  = [[x II 
interleave x (y  : ys) = [x : y : ys] * map (y : ) ( interleave x ys) 

That is, there is only one way of interleaving x into an empty list , namely 
the list containing just x .  The ways of interleaving x into a non-empty list 
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(y : ys) are either to begin the list with x and follow it with (y : ys) ,  or to 
begin the list with y and follow it with an interleaving of x into ys . 

Alternatively, a non-recursive definition is given by: 

interleave x ys = [take i ys * [x] * drop i ys I i +- [0 . .  #ys]] 

It is an interesting exercise to synthesize the recursive definition from the 
non-recursive one. 

Permutations. The function perms returns a list of all permutations of a 
list . For example: 

? perms "era" 
["era" "rea" "rae" "ear" "aer" "are"] , , , , , 

IT xs has length n, then perm xs has length n! = n X (n - 1) X • • •  X 1. This 
can be seen by noting that any of the n elements of xs may appear in the 
first position, and then any of the remaining n - 1 elements may appear in 
the second position, and so on, until finally there is only one element that 
may appear in the last position. 

A recursive definition of perms can be made using the function interleave 
defined in the previous section: 

perms [ ]  
perms ( x  : xs) 

= [ [ ] ]  
= concat (map ( interleave x )  (perms xs) )  

That i s ,  there i s  only one permutation of the empty list , namely itself. The 
permutations of the non-empty list (x : xs) are all ways of interleaving x into 
a permutation of xs. 

The use of concat in the above definition is essential. This can be seen 
by considering types . The types of perms and interleave are: 

perms .. [a] -+ [[a]] 
interleave .. a -+ [a] -+ [ [a]] 

Assuming x :: a and xs :: [a] , we have: 

( map ( interleave x ) (perms xs)) : :  [[[a]]] 
So we must apply concat to the result of the map, to turn the value of type 
[[[a]]] into a value of type [[a]] . 

The second equation defining perms can also be written with a list com
prehension: 

perms (x : xs) = [zs I ys +- perms XS j zs +- interleave x ys] 

The method in Section 3.4 can be used to translate this into the equation 
given previously. 
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One recipe for sorting a list is to examine all permutations of it and choose 
the first that is sorted in non-decreasing order: 

sort xs = hd [ys I ys +- perms xs ; nondec xs] 
nondec xs = and [x :::; y I (x ,  y) +- zip (xs ,  tl xs)] 

This definition of sorting, although correct , is extremely inefficient . 

Partitions .  A list of lists xss i s  a partition of a list xs if: 

concat xss = xs 

For example, ["era"] and ["e" , "ra"] and ["e" , "" , "r" , "" , "a"] are all partitions 
of "era" . In general, the partition of a list can be arbitrarily long, since it 
may contain any number of empty lists . We say that xss is a proper partition 
of xs if it is a partition and it contains no empty lists .  

The function parts returns a list of all proper partitions of a list. For 
example: 

? parts "era" 
[["era"] ,  ["er" , "a"] ,  ["e" , "ra"] , ["e" , "r" , "a"] ]  

If xs has length n then parts xs has length 2n-1 . This can be seen by noting 
that there are n - 1 places where a break might occur (between each element 
of the list xs) and for each place there are two possibilities (either a break 
occurs there or it does not) .  

A recursive definition of parts is given by: 

parts [ ]  = [[ ]] 
parts [x] = [[[ x]]] 
parts (x : (x' : xs))  = map (glue x )  (parts (x' : xs) )  

* map ( [x] :) (parts (x' : xs)) 

glue x xss = (x : hd xss) : tl xss 

The empty sequence has one partition, namely [] , consisting of an empty 
sequence of sublists .  A sequence of length one, [x] ,  has exactly one partition, 
namely [[x]] , and the list containing this one partition is [[[x )]] .  A sequence 
of length two or more, (x : (x' : xs) ) ,  may have its partitions formed in two 
ways . Namely, if yss is a partition of (x' : xs) ,  then glue x yss and [xl : yss 
will both be partitions of the original list . Notice that we can guarantee 
that glue x yss exists since (x' : xs) has at least length one so yss is non
empty. Further, every element in the partition yss must be non-empty, so in 
particular the first element is non-empty and therefore glue x yss must be a 
different partition than [x] : yss . 

A completely different way of generating the partitions of a list is as 
follows . Above we noted that if xs is a list of length n, then each partition 
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of xs can be generated by choosing whether or not to break at each of the 
n - 1 places between elements of xs . We can represent this choice by a list 
containing only numbers in the range 0 to n - 1  and sorted in ascending order. 
For example, the list [1 , 4] corresponds to the partition ["a" , "bed" , "ef"] of 
the list "abcdef" . 

Based on this idea, we have the following definition of partitions: 

parts xs = [ break ks xs I ks +- subs [1 . .  n - 1]] 
where n = #xs 

break ks xs = [sublist i j xs I ( i , j )  +- zip ( [0] * ks , ks * [n] )] 
where n = #xs 

sublist i j xs drop i ( take j xs) 

Here sublist i j xs returns elements i + 1 through j of xs, for example, 
(sublist 1 4 "abcdef" ) returns "bed" . The term ( break ks xs) returns the par
tition of xs corresponding to ks, for example, ( break [1 , 4] "abcdef" ) returns 
["a" , "bed" , "ef"] ,  which are the (0, 1 ) ,  ( 1 , 4) and (4, 6) sublists of "abcdef" . 

We noted previously that subs xs has length 2n when xs has length n, so 
the alternative definition of parts confirms the result that parts xs has length 
2n-1 when xs has length n. It is left to the exercises to prove that the two 
different definitions of parts are indeed equivalent .  

Exercises 

5.6.1 The function segs xs returns a list of all contiguous segments in a list . 
For example: 

? segs "list" 
["" "t" "s" "st" "i" "is" "ist" "1" "li" "lis" "list"] , , , , , , " , , 

Give a recursive definition of segs. If xs has length n, what is the length of 
segs xs? 

5 .6.2 The function choose k xs returns a list of all subsequences of xs whose 
length is exactly k. For example: 

? choose 3 "list" 
["ist" "1st" "lit" "lis"] , , , 

Give a recursive definition of choose. Show that if xs has length n then 
choose k xs has length nk (see Exercise 5 . 1 .3 ) .  

5 .6 . 3  Prove that : 

subs ( map f xs) = map (map f) ( subs xs) 

for every function f and finite list xs . What are the corresponding laws for 
inits , perms, and parts? 
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5 . 6 .4 Derive the recursive definition of interleave from the definition in terms 
of list comprehensions. (Hint: Use the result of Exercise 5.3.8, modified to 
give a recursive definition of [0 . .  n] . ) 

5 . 6 . 5  Prove that the two definitions of paris given in Section 5.6 are equiv
alent. (Hint: First , synthesise the following recursive definition of breaks : 

breaks [ ]  xs 
breaks (k  : ks) xs 

= [xs] 
= take k xs :  

breaks (map (+( -k) )  ks) (drop k xs) 

Next , use this definition to prove the following two lemmas : 

break (map (+1)  ks) (x : xs) 
break ( 1 : map (+1)  ks) (x : xs) 

glue x ( break ks xs) 
[x] : break ks xs 

Then use Exercises 5.3.8 and 5.6.3 to prove the final result .) 
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Efficiency 

So far, we have concentrated mainly on developing an expressive language, on 
proving properties of programs, and on deriving programs from specifications. 
Only occasionally have we considered the question of how efficiently such 
programs run. The time has come to focus on this important issue. This 
chapter describes some fundamental techniques used to model the efficiency of 
programs, discusses the efficiency of some common patterns of computation, 
and presents two important techniques for writing efficient programs . 

6 . 1  Asymptotic behaviour 

We have already seen several examples of programs that perform the same 
task but have different efficiencies .  For instance, Sections 5 .4.2 and 5 .4.4 
described two programs for reversing lists. If the list xs has length n, then 
reverse xs requires a number of steps proportional to n2 to compute the 
reversed list , while rev xs only requires a number of steps proportional to n. 

The awkward phrase 'number of steps proportional to' has appeared in 
this book wherever efficiency is discussed. Fortunately, a less cumbersome 
mathematical notation exists .  First , we adopt the convention that Tf (x) 
stands for the number of reduction steps to compute (f x) , that is, the number 
of steps required to reduce (f x) to canonical form. The 'T' is short for 
'time' ,  since the number of reduction steps is generally proportional to the 
time required to perform a computation. The number of reduction steps is 
measured with respect to the graph reduction model of computation, which 
is discussed in more detail in the next section. 

Second, we use the O-notation, which allows us to write the two state
ments above as follows: 

T ret/er.e ( xs) = O ( n2 ) 
Tret/ (xs) = O (n) 

where n is the length of xs. The '0 ' is short for 'order of at most ' ,  and a 
precise explanation of its meaning follows .  

138 



6.1 ASYMPTOTIC BEHAVIOUR 139 

If g( n) is some function of n, then whenever we write: 

g(n) = O(h(n)) 

this means that there exists some constant M such that : 

Ig(n) 1 ::s; Mlh(n) 1 

for every positive n. This does not define g(  n) precisely, but does say that 
g( n) is bounded by a function that is proportional to h( n) .  

Here Ig(n) 1 denotes the absolute value of g(n) .  For our purposes, g(n) 
will usually be positive, since it  represents the time resources used by a 
program with input of size n. However, the definition above is traditional in 
mathematics , and makes some manipulations of O-notation easier. 

As an example, say that g( n) is a polynomial of degree m: 

Then we have: 
g(n) = O(nm) 

A suitable M in this case is given by M = l ao l  + l al l + . . .  + l am l .  It is left as 
an exercise to show for this value of M that Ig(n) 1 ::s; Mnm for every n > O.  
The definition of O-notation is cal'eful to guarantee the inequality only for 
positive n, so that the case n = 0 causes no problems. 

Note that the O-notation must be used with some care. For example, if 
f(n) = O(h(n)) and g(n) = O(h(n) ) ,  this does not imply that f(n) = g(n) .  
By convention, we always write equations containing O-notation so that the 
left-hand side of an equation is never less precise than the right-hand side. For 
example, it is fine to write n2 +n = O(  n2 ) ,  but we never write O ( n2 ) = n2 +n.  
Otherwise, since 2n2 = O(n2) ,  we could come to the absurd conclusion that 
2n2 = n2 + n for every n. 

To return to our example, the statements :  

Tre1Jerse (xs) 
Tre" (xs) 

= O (n2 ) 
= O(n) 

mean that there exist constants MI and M2 such that for every list xs of 
length n, where n > 0 ,  the number of steps to compute reverse xs is bounded 
by Mln2 , and the number of steps to compute rev xs is bounded by M2n. 

Nothing is said about the relative values of MI and M2 . However, even if 
MI is much less than M2 , the second program is still the faster one in almost 
all cases . For example, say that MI is 2 and M2 is 20. Then for short lists 
the first program is indeed better: applying reverse to a list of length 5 will 
require at most 50 steps (2 X 52 ) , while applying rev requires up to 100 steps 
(20 X 5) . But for longer lists the second program will be better: applying 
reverse to a list of length 20 requires up to 800 steps, while applying rev 
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requires at most 400. As the lists get longer and longer, the advantage of rev 
becomes more and more pronounced. 

Estimating the performance of a program using just O-notation is called 
asymptotic analysis, and the estimate is called the order of magnitude. For 
example, reverse has a quadratic order of magnitude, and rev has a linear 
one. In geometry, an asymptote is the limit of a curve as it approaches 
infinity. Similarly, asymptotic analysis describes the behaviour of a program 
as it 'approaches infinity' ,  that is, as it processes larger and larger data items. 

For many purposes an asymptotic analysis is sufficient . Generally, the 
time required to compute a value is proportional to the number of reduction 
steps required, regardless of the particular implementation used. If one pro
gram has a smaller order of magnitude than another, it will generally run 
faster under all implementations for sufficiently large input .  Thus, asymp
totic analyses yield information that is implementation independent . 

On the other hand, sometimes more detailed information is necessary. 
For instance, we may need to compare two programs that have the same 
order of magnitude of reduction steps. Also, when the data are not large an 
asymptotic analysis may be less relevant and we may wish to know the size of 
the constants of proportionality. In such cases, an exact count of the number 
of reduction steps may be useful. Another useful method is testing: to run 
each program on a range of data values with a stopwatch in one hand - or the 
computerised equivalent. Generally, at least some testing will be desirable 
to confirm that the model is a reasonable predictor of actual behaviour. As 
in any engineering discipline, one must decide on the appropriate mixture 
between simple models (such as asymptotic analysis) , more detailed models 
(such as counting the exact number of reduction steps) , and testing (such as 
timing the program in a particular implementation) . 

Exercises 

6.1 .1 Use the T and O-notations to give computation times for the following 
functions: hd, last, (#) ,  fib, and fastfib . 

6.1 .2  If g(n) = O(n2) - O (n2 ) may we conclude that g{n) = 01 What should 
the right-hand side of the second equation be? 

6 .1 .3 Prove that if: 

then both of the statements :  

g(n) = O (nm) 
g(n) = amnm + O (nm-l ) 

are valid. 
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6.2 Models of reduct ion 

As noted, the phrase 'number of reduction steps'  has appeared several times 

in this book. The purpose of this section is to give a more precise definition 
of its meaning. 

Say that we have defined: 

pyth x y = sqr x + sqr y 
sqr x = x x x 

Then the term pyth 3 4 can be evaluated in six reduction steps: 

pyth 3 4 => sqr 3 + sqr 4 (pyth) 
=> (3 x 3) + sqr 4 (sqr) 
=> 9 + sqr 4 ( x )  
=> 9 + (4 x 4) (sqr) 
=> 9 +  16 ( x )  
=> 25 (+ ) 

Each reduction step replaces a subterm - called a redex - by an equivalent 
term ( 'redex' is short for 'reducible expression') . In each step, either the 
redex matches the left-hand side of an equation (like sqr 3) and is replaced 
by the corresponding right-hand side (3 x 3) ,  or the redex is a primitive 
application (like 3 x 3) and is replaced by its value (9). 

The number of steps may depend on the order in which redexes are re
duced. Say that: 

1st (x ,  y) = x 
as usual, and we wish to evaluate 1st (sqr 4, sqr 2). One possible reduction 
sequence is: 

1st (sqr 4, sqr 2) => 1st (4 x 4, sqr 2) (sqr) 
=> Ist (16, sqr 2) ( x )  
=> Ist (16, 2 x 2) (sqr) 
=> 1st (16, 4) ( x )  
=> 16 (1st) 

which requires five steps. A second possibility is: 

1st (sqr 4, sqr 2) => sqr 4 (1st) 
=> 4 x 4  (sqr) 
=> 16 ( x )  

which requires only three. . 
These two reduction sequences illustrate two reduction policies, called 

innermost reduction and outermost reduction, respectively. In the first , each 
step reduces an innermost redex, that is, one that contains no other redex. 
In the second, each step reduces an outermost redex, that is, one that is 
contained in no other redex. 
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6.2.1 Termination 

Some reduction orders may fail to terminate. Say we have defined: 

answer = 1st (42, loop) 
loop = tl loop 

and 1st and sqr are as defined above. Evaluating answer by innermost re
duction we have: 

answer => 1st (42, loop) 
=> 1st (42, tl loop) 
=> 1st (42, tl ( tl loop)) 
=> 

( answer) 
( loop) 
( loop) 

which does not terminate. But using outermost reduction we have: 

answer => 1st (42, loop) (answer) 
=> 42 (1st) 

which requires only two steps. 
Thus, sometimes outermost reduction will yield an answer when inner

most reduction fails to terminate. However, when both reduction methods 
terminate then they will both yield the same answer. Further, outermost 
reduction has the important property that ,  for every term, if there exists any 
reduction order that terminates, then there is an outermost reduction that 
terminates . 

Outermost reduction is also called normal order reduction, because it is 
capable of reducing a term to normal (canonical) form whenever the term has 
such a form; and it is also called lazy evaluation, because it does not reduce 
a term unless it is essential for finding the answer. By contrast , innermost 
reduction is also called applicative order reduction and eager evaluation. 

Recall that a function is strict if it is undefined whenever its argument 
is undefined. For example, multiplication is strict in its first and second 
argument, since .1 X x = .1 and x X .1 = .1 . On the other hand, the tuple 
constructing function is not strict , since (.1,  x) '" .1 and (x , .1 )  '" .i.  

Outermost reduction i s  essential for evaluating non-strict functions, as 
the answer example shows. Some functional languages (unlike the nota
tion described in this book) allow only strict functions. For such languages,  
innermost reduction may be used instead of outermost . This is because in
nermost and outermost reduction are equivalent when only strict functions 
are involved, that is, both will terminate for exactly the same terms. 

6.2.2 Graph reduction 

In the examples above, outermost reduction always requires no more reduc
tion steps than innermost reduction, and often requires fewer. Thus, simply 
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on efficiency grounds it seems preferable. Indeed, the termination problems 
of innermost reduction are simply an extreme case of this, where innermost 
reduction requires infinitely more steps than outermost .  

However, i t  is not always true that outermost reduction, as  defined above, 
requires fewer steps than innermost . Consider simplifying the expression 
sqr (4 + 2) . Using innermost reduction we have: 

sqr (4 + 2) => sqr 6 (+) 
=> 6 x 6  (sqr) 
=> 36 ( x )  

which requires three steps, while using outermost reduction we have: 

sqr (4 + 2) => (4 + 2) x (4 + 2) (sqr) 
=> 6 x (4 + 2) (+) 
=> 6 x 6  (+) 
=> 36 ( x )  

which requires four. The problem here i s  that the term (4 + 2 )  is duplicated 
by the reduction of sqr , and so must be reduced twice. Although the number 
of steps required differs only by one, the difference could be made arbitrarily 
large by replacing the term (4 + 2) by a term that requires more steps to 
reduce. Further, the problem is not limited to sqrj it arises for any definition 
where a variable on the left-hand side appears more than once on the right
hand side . 

This problem can be solved by representing terms by graphs that indicate 
shared subterms. For example, the graph: 

�(4 + 2) 

represents the term (4 + 2) x (4 + 2). Each instance of the subterm 4 + 2 
is represented by an arrow - called a pointer - to that term. Now, using 
(outermost ) graph reduction we have: 

sqr (4 + 2) => ( I  x l) 

=> ( I x l) 

=> 36 ( x )  

which requires only three steps. Thus , the use of graphs avoids the problem 
of duplicated subterms. With graph reduction, outermost reduction never 
performs more reduction steps than innermost. 
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Shared sub terms in a graph may also be introduced by where clauses . For 
instance, given the definition: 

roots a b c = « - b - d) / e , ( - b + d) / e ) 
where d = sqrt (sqr b - 4 X a X c) 

e = 2 X a 

the term roots 1 5 3 reduces (in a single step) to: 

tqrt (sqr 5 - 4 X 1 X 3) �(2 X 1) 

and this term can then be reduced in the same way as before. In Section 7.6 
we shall see how where clauses may also be used to introduce cyclic graphs . 

Arrows have no meaning except to indicate sharing. Both: 

and sqr (4 + 2) are equivalent ways of writing the same term. 
We will use the total number of arguments as a measure of the size of a 

term or graph. For example, the term: 

sqr 3 + sqr 4 

has size four (each application of sqr has one argument, and + has two 
arguments) and the graph: 

also has size four ( X and + each have- two arguments). 

6.2.3 Head normal form 

Sometimes we need to reduce a subterm, but not all the way to normal form. 
Consider the outermost reduction: 

hd (map sqr [1 . . 7] ) 
=> hd (map sqr ( 1 : [2 . .  7])) 
=> hd (sqr 1 :  map sqr [2 . .  7]) 
=> sqr 1 
=> 1 x 1  
=> 1 

Here we needed to reduce (map sqr [1 . .  7] ) , but not all the way to the normal 
form [1 , 4, 9, 16, 25 , 36, 49] . This in turn required reducing [1 . . 7] , but not all 
the way to the normal form [1 , 2 , 3 , 4, 5, 6 , 7] . 
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However, any term that is reduced must be reduced to head normal form. 
By definition, a term is in head normal form if it is not a redex, and it cannot 
become a redex by reducing any of its subterms. Every term in normal form 
is in head normal form, but not vice versa. In particular, any term of the 
form (el : e2 )  is in head normal form, because regardless of how far el and 
e2 are reduced there is no reduction rule that applies to this term. However, 
( el : e2 ) is in normal form only when el and e2 are both in normal form. 
Similarly, any term of the form (el l e2 ) is in head normal form, but is in 
normal form only when el and e2 are. 

Whether a term needs to be reduced further than head normal form 
depends on the context in which it appears. In the example above, the 
subterm map sqr [1 . .  7] only needed to be reduced to its head normal form, 
sqr 1 : map sqr [2 . .  7] . On the other hand, to print map sqr [1 . .  7] , first it 
would be reduced to head normal form, then sqr 1 would be reduced to its 
normal form, 1 ,  then map sqr [2 . .  7] would be reduced to head normal form, 
and so on. 

6.2.4 Pattern matching 

For rules involving pattern matching, the outermost reduction strategy is , by 
itself, not sufficient to guarantee that a terminating reduction sequence will 
be found if one exists .  For an example, recall the definition of zip : 

zip ( [ ] ,  ys) 
zip (x : xs , [ ] )  
zip (x : xs , y : ys) 

Now consider the reduction: 

= [ ]  
= [ ]  
= (x ,  y) : zip (xs ,  ys) 

zip (map sqr [ ] ,  loop) 
=? zip ( [ ] ,  loop) 
=? [ ]  

This i s  an outermost reduction, since (map sqr [ ] )  appears inside no other 
redex. But the non-terminating reduction: 

zip (map sqr [ ] ,  loop) 
=? zip (map sqr [ ] ,  tl loop) 
=? zip (map sqr [ ] ,  tl (tl loop)) 

is also outermost , since in each case ( tl loop) appears inside no other redex. 
When a function application involves pattern matching, we allow a sub

term to be reduced only if it is required by the pattern. Thus , given the 
above term: 

zip (map sqr [ ] ,  loop) 
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we must determine whether the first subterm matches [ ] or (x : xs) in the 
definition of zip . Hence, the next outermost reduction step must be to reduce 
(map sqr [ ] ) .  We do not allow the second subterm, loop , to be reduced, 
because its value may not be needed (and, indeed, is not) . On the other 
hand, given the term: 

zip (1 : map sqr [2, 3] , map sqr [4, 5 , 6]) 
the first subterm matches (x : xs) ,  and so we must next determine whether 
the second subterm matches [ ]  or (y : ys) .  Hence, the next outermost reduc
tion step must be to reduce (map sqr [4, 5 , 6] ) . 

Although this constraint on the reduction order seems quite natural, a 
precise definition is surprisingly difficult and beyond the scope of this text. 
For a discussion of some of the issues , see Peyton Jones and Wadler [7] . In 
particular, readers should note that all of the definitions given in this book 
are uniform in the sense described in [7] . 

6.2.5 Models and implementations 

We shall adopt outermost graph reduction as our model of computation, be
cause it has two desirable properties : (i) it terminates whenever any reduction 
order terminates, and (ii) it requires no more (and possibly fewer) steps than 
innermost order reduction. 

To be precise, the time and space required to evaluate a term eo are 
modelled as follows. Let : 

eo :::;. el :::;' e2 :::;' ' ' ' :::;' en 
be a sequence of outermost graph reduction steps yielding the normal (canon
ical) form en . Then the time required to reduce eo to normal form is taken 
to be the number of reduction steps, namely, n .  Further, the space required 
is taken to be the size of the largest graph in the reduction sequence, namely, 
the maximum of the sizes of eo, . . .  , en . 

The implementation methods used in practice for functional languages 
usually correspond more or less closely to graph reduction, so that the graph 
reduction model is generally a good predictor of the behaviour of an ac
tual implementation. As mentioned before, one must choose judiciously the 
proper mixture of modelling and testing when evaluating the efficiency of a 
program. 

Some of the most efficient techniques for implementing functional lan
guages are based directly on graph reduction. Of these, the most notable 
are the G-machine , devised by Thomas Johnsson and Lennart Augustsson, 
and the SKI-reducer, devised by David Turner. For further information, the 
reader is referred to Peyton Jones' textbook [8] . Another important im
plementation technique is the SEeD machine, developed by Peter Landin. 
Originally it was designed for innermost reduction, but an adaptation for 
outermost reduction is described in Henderson's textbook [9] . 
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Exercises 

6 . 2 . 1  Give innermost, outermost , and outermost graph reduction sequences 
for each of the following terms: 

cube ( cube 3) 
map (1+) (map (2x )  [1 , 2, 3] ) 

hd ( [1 , 2 , 3] * loop) 

Count the number of reduction steps in each sequence (if it terminates) . 

6 . 2 . 2  Give outermost reduction sequences for each of the following terms : 

zip (map sqr [1 . . 3] , map sqr [4 . .  6]) 
take (1 + 1) ( drop (3 - 1) [1 . . 4]) 

take (42 - 6 X 7) (map sqr [1234567 . . 7654321]) 

Indicate all outermost redexes that are not reduced because of the restrictions 
imposed by pattern matching. 

6 . 2 .3 Section 5 .6 defined a function subs that returns all subsequences of a 
list : 

subs [ ]  
subs (x : xs) 

An equivalent definition is : 

subs' [ ]  

= [[ ]] 
= subs xs * map (x :) (subs xs) 

= [[ ] ] 
subs' (x : xs) = yss * map (x : ) yss 

where yss = subs' xs 

Show the graph reduction steps in computing subs [1 , 2 , 3] and subs' [1 , 2 , 3] . 
Use the O-notation to give formulae for the time and space required to com
pute subs [1 . .  n] and subs' [1 . .  n] . 

6.3 Reduction order and space 

Outermost graph reduction is always at least as good as innermost, in the 
sense that it uses no more (and possibly fewer) reduction steps. However, 
sometimes using a combination of outermost and innermost reduction can 
save on the amount of space used. In this section, we introduce a special 
function, strict , and show how it can be used to control reduction order and 
save space. The main example involves the foldl function, and we conclude 
by considering the trade-offs between foldl and foldr . 

As we know, sum can be defined using either foldl or foldr. For the time 
being, let 's assume it is defined using foldl: 

sum = foldl ( + ) 0 
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(We will shortly turn to the question of whether, in general, it is preferable 
to use foldl or foldr in such a definition.) 

Consider reduction of the term sum [1 . .  1000] : 

sum [1 . .  1000] 
=? foldl ( + ) 0 [1 . . 1000] 
=? foldl (+) (0 + 1) [2 . .  1000] 
=? foldl (+) « 0 + 1) + 2) [3 . .  1000] 

=? foldl (+) ( . . . « 0 + 1) + 2) + . . .  + 1000) [ ]  
=? ( • • •  « 0 + 1) + 2) + . . .  + 1000) 
=? 500500 

Notice that in computing sum [1 . .  n] by outermost order reduction, the re
duction terms grow in size proportional to n. On the other hand, if we use a 
judicious mixture of outermost and innermost reduction order, then we have 
the following reduction sequence: 

sum [1 . .  1000] 
=? foldl ( + ) 0 [1 . . 1000] 
=? foldl (+)(0  + 1) [2 . .  1000] 
=? foldl ( + ) 1 [2 . .  1000] 
=? foldl (+) (1  + 2) [3 . .  1000] 
=? foldl ( + ) 3 [3 . .  1000] 

=? foldl ( +)  500500 [ ]  
=? 500500 

Now the maximum size of any term in the reduction sequence is bounded 
by a constant . In short, reducing sum [1 . . n] to normal form by purely 
outermost reduction requires O(n) space, while a combination of innermost 
and outermost reduction requires only 0(1) space. 

This suggests that it would be useful to have a way of controlling reduction 
order, and we now introduce a special function, strict , that allows us to do 
so. 

6.3.1 Controlling reduction order 

Reduction order may be controlled by use of the special function strict. A 
term of the form strict f e is reduced by first reducing e to head normal 
form, and then applying f. The term e will itself be reduced by outermost 
reduction, except , of course, if further calls of strict appear while reducing e . 

As a simple example, if we define: 

incr x = x + 1 



6.3 REDUCTION ORDER AND SPACE 

then: 

but : 

incr ( incr (8 X 5» 
� incr (8 X 5) + 1 
� «8 x 5) + 1) + 1  
� (40 + 1) + 1 
� 41 + 1  
� 42 

strict incr (strict incr (8 X 5» 
� strict incr ( strict incr 40) 
� strict incr ( incr 40) 
� strict incr (40 + 1) 
� strict incr 41 
� incr 41 
� 41 + 1 
� 42 

Both cases perform the same reduction steps, but in a different order. 

149 

Currying applies to strict as to anything else. From this it follows that if 
f is a function of three arguments ,  writing strict (J el ) ez e3 causes the second 
argument to be reduced early, but not the first or third. 

Given this, we can rewrite the definition of foldl as follows: 

foldl' ( EB) a [ ]  = a 
foldl' ( EB) a (x : xs) = strict (Joldl' ( EB )) ( a EB x ) xs 

We now have: 

sum [1 . .  1000] 
� foldl' (+) 0 [1 . .  1000] 
� strict (Joldl' ( +)) (0 + 1) [2 . .  1000] 
� foldl' ( + ) 1 [2 . .  1000] 
� strict (Joldl' (+» (1 + 2) [3 . .  1000] 
� foldl' ( + ) 3 [3 . .  1000] 

� foldl' ( + ) 500500 [ ] 
� 500500 

which has the desired space behaviour. Here we have assumed it is valid to 
replace foldl by foldl' in the definition of sum. We will prove this shortly. 

The function strict should be used sparingly. The definition of foldl' is 
one of the very few places where we recommend its use. 
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6.3.2  Strictness 

The operational definition of strict given in the previous section may be 
re-expressed in the following way:  

strict f x 1. ,  if x = 1. 
= f x , otherwise 

Although this equation characterises the properties of strict , it is not a valid 
definition in our notation since x = .1. is not a computable boolean expression. 

Recall that a function f is said to be strict if f .1. = .1. .  It follows from the 
above equation that f = strict f if and only if f is a strict function. (To see 
this, just consider the values of (f x) and (strict f x) in the two cases x = .1. 
and x f:. .1..)  This explains the name strict .  

Furthermore, iff i s  strict , but not everywhere .1. ,  and e f:. .1. ,  then reduc
tion of f e eventually entails reduction of e. Thus, if f is strict , evaluation 
of f e and strict f e perform the same reduction steps, though possibly in a 
different order. In other words , when f is strict , replacing it by strict f does 
not change the meaning or the time required to apply it , although it may 
change the space required by the computation. 

It is an easy exercise to show that if .1. 61 x = .1. for every x , then 
fold ( 61 ) .1. xs = .1. for every finite list xs . In other words, if ( (1) is strict in its 
left argument , then foldl (61) is strict , and so equivalent to strict (foldl (61)) , 
and hence also equivalent to foldl' (61) . It follows that replacing foldl by foldl' 
in the definition of sum is valid, and the same replacement is valid whenever 
foldl is applied to a binary operation that is strict in its first argument . 

6.3.3 Fold revisited 

The first duality theorem, stated in Section 3.5 . 1 ,  states that if (61) is asso
ciative with identity a (that is, if (61) and a form a monoid) , then: 

foldr (61) a xs = foldl (61) a xs 

for every finite list xs . We now consider the relative costs of computing the 
terms on each side of this equation. Whether foldr or foldl is more efficient 
will depend on the properties of (61) . 

A common case is that (61) is strict in both arguments ,  and can be com
puted in 0(1)  time and 0 (1 ) space. Examples that fall into this category 
are ( +) and (x) . In this case it is not hard to verify that foldr (61) a xs and 
foldl (61) a xs both require O(n) time and O(n) space to compute. So there 
is little to choose between foldr and foldl .  However, the same argument used 
for sum generalises to show that in this case foldl may safely be replaced by 
foldl' , and that while foldl' (61) a xs still requires O( n) time, it only requires 
0(1) space to compute. So in this case, foldl' is the clear winner. 
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If (EB) does not satisfy the above properties , then choosing a winner may 
not be so easy. A good rule of thumb, though, is that if (EB) is non-strict in 
either argument then foldr is usually more efficient than foldl .  We give two 
examples . 

For the first example, consider the (1\)  operation. Recall that (1\ )  is strict 
in its first argument , but non-strict in its second. In particular, False 1\ x 
returns False without evaluating x .  Assume we are given a list : 

and that some element Xi of this list is False. Then 

foldr (1\)  True xs 

requires O( i) steps for its evaluation, while: 

foldl (1\)  True xs 

requires O (n) steps. Clearly, in this case foldr is a better choice. 
For the second example, consider concatenation. Recall that the concate

nation of two lists ,  xs * ys , requires time O(n) to compute, where n is the 
length of xs . Let xss = [XSl , XS2 , . . .  , xSml be a sequence of m lists of lengths 
nl , . . .  , nm , respectively. We consider the times to compute foldl (*) [ 1  xss 
and foldr ( * ) [ 1  xss.  

If we use foldl, then [ 1  is concatenated to XSI ,  requiring time 0(1 ) ;  and XSI 
is concatenated to XS2 , requiring time O(nl ) ;  and (XSI * XS2 ) is concatenated 
to XS3 , requiring time 0 (ni + n2 ) ;  and so on; and finally (XSI * . . .  * XSm-l ) 
is concatenated to XSm ,  requiring time O(ni + . . .  + nm-d. The total time 
required is : 

O (nl ) + O(nl + n2)  + . . .  + O(nl + n2 + . . .  + nm-l ) 
= O((m - l)nl + (m - 2)n2 + . . .  + nm-d 

On the other hand, if we use foldr , then XSl is concatenated to (XS2 * 
XS3 * . . .  * xsn) ,  requiring time O (XSl ) ; and XS2 is concatenated to (XS3 * 
. . . * xsn) ,  requiring time 0(XS2 ) ;  and so on; and finally XSm is concatenated 
to [ ] ,  requiring time O(xsm) .  The total time required is: 

O(nt ) + 0(n2 )  + . . .  + O(nm) = O(nl + n2 + . . .  + nm ) 

Thus foldr computes its result more rapidly than foldl in almost all sit
uations (but not if the final list , XSm ,  is sufficiently long) . It may be easier 
to understand this result if we make the simplifying assumption that all of 
the lists XSl , . . .  , XSm have the same length n = nl = . . .  = nm . Then using 
foldl requires time 0(m2n) ,  while using foldr requires only time O(mn) .  

To summarise: for functions , such as (+) or (x ) ,  that are strict in both 
arguments and can be computed in constant time and space, foldl' is more 
efficient . But for functions , such as (1\)  or (*) ,  that are non-strict in some 
argument , foldr is often more efficient . 
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Exercises 

6 . 3 . 1  Prove that if .L E9 x = .L for every x , then foldl (E9) .L xs = .L for every 
fini te list zs .  

6 . 3 . 2  We previously defined: 

maximum = fold11 (min) 

Apply the results of this section to this definition. 

6 . 3 . 3  Give the time and space required to compute each of: 

foldr (V)  False ( copy n True) 
foldr (*) [ ] ( copy m (copy n 'X')) 

What is the time and space when foldr is replaced by foldl? 

6.4 Divide and conquer 

One useful technique for designing efficient algorithms is known as "divide 
and conquer" . The general idea is to solve a problem P by dividing it into 
subproblems - each an instance of P but on inputs of smaller size - in such 
a way that the solution of the original problem can be assembled from the 
solutions to the subproblems. In this section we shall give three applications 
of the divide and conquer technique, and show why it can lead to efficient 
solutions for certain kinds of problem. 

6.4 .1  Sorting 

Let us start by considering the problem of sorting. We have already encoun
tered one sorting method (in Exercise 3.5.4), namely insertion sort : . 

isort = foldr insert [ ] 
insert x xs = takewhile (� x) zs * [x] * dropwhile (� x) xs 

Let Tifl6ert (n) denote the time to insert an element into a list of length n 
using insert, and let Ti8ort ( n) denote the time to sort a list of length n using 
isort . Since the evaluations of takewhile (� x) zs and dropwhile (� x) xs each 
require O(n) steps, where n = #xs, we have: 

Tinsert (n) = O(n) 

It follows that : 
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So, insertion sort never requires more than quadratic time to sort its argu
ment . Since it does require quadratic time in the worst case (for example, 
when the input list is in descending order) , the above bound is tight . 

Using methods we have described previously, it is a simple exercise to 
synthesise the following, equivalent, version of insert: 

insert x [ ]  = [x] 
insert x (y : ys) = x :  y : ys , if x ::; y 

= y :  insert x ys, otherwise 

Evaluating ( insert x xs) with the new definition requires about three times 
fewer reduction steps than before, but the new version of isort still possesses 
a quadratic bound: if the length of the input list increases by a factor of 10, 
the time to sort it may increase by a factor of 100. 

Insertion sort works by dividing the list into two parts - the first element 
and the remainder. It sorts the remainder, and then inserts the first element 
into the sorted list . A variation on this idea is to divide the list into two parts 
of roughly equal size, sort each part , and then merge the resulting lists .  This 
approach yields the following divide and conquer algorithm, called merge 
sort : 

msort xs = xs , if n ::;  1 
= merge (msort us) (msort vs) , otherwise 

where n = #xs 
us = take (n div 2) xs 
vs = drop (n div 2) xs 

The function merye is defined by the equations: 

merye [ ]  ys = ys 
merge (x : xs) [ ]  = x :  xs 
merge (x : xs) (y : ys) = x :  merge xs (y : ys) , if x ::;  y 

= y :  merge (x : xs) ys , otherwise 

To analyse the performance of merge sort , let Tmerge (n) denote the time 
to merge two lists of combined length n, and let Tm6ort (n) denote the time to 
sort a list of length n using msort. It is easy to check that Tmerge (n) = O (n) 
since each reduction step produces at least one more element of the result . 
To calculate Tm8ort (n) for n > 1 ,  observe that O(n) steps are required to 
split the argument list into two sublists, approximately T msort (  n div 2) steps 
are required to sort each sublist and, as we have seen, another O(n) steps 
are required to merge the results .  Hence: 

Tmsort (n) = 0(1),  if n ::;  1 
2 Tmsort (n div 2) + O (n) , otherwise 
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Recurrence relations of this form arise frequently in the analysis of divide 
and conquer algorithms. To solve it, suppose we define T by: 

T(n) = d, if n = 1 
= 2T( n div 2) + cn, if n > 1 

A proof by induction establishes that : 

T(n) ::; cn log2 n + d 

for all n 2: 1 .  It follows that : 

Tm.ort (n) = O(n log2 n) 

Thus , merge sort is considerably faster than insertion sort . If the length 
of the input list increases by a factor of 10,  then insertion sort will require 
100 times longer, while merge sort will only take 33 times longer (33 = 
10 log2 10) .  For every factor of 10 in the length of the input , merge sort gains 
another factor of 3 over insertion sort . Hence, the difference between the two 
versions of insertion sort is insignificant when compared with the difference 
between insertion sort and merge sort . This demonstrates why we are mainly 
concerned with asymptotic analysis rather than constant factors . 

Quicksort . There is a second way we can apply the idea of divide and 
conquer to the problem of sorting. In merge sort most of the effort goes 
into combining the solutions to the subproblems (the merge function) ,  while 
finding the subproblems is relatively easy (the input list is simply chopped in 
two). In the following algorithm, called quicksort, the effort is apportioned 
in a different manner: 

qsort [ ]  = [ ]  
qsort (x : xs) = qsort [u I u f- XS j U < x] * [x]* 

qsort [u I u f- XS j u 2: xl 

The essential point about quicksort is that the input list (apart from its first 
element x ) is divided into two sublists in such a way that no element of the 
first sublist is greater than any element of the second. This means that , after 
sorting, the two sublists can be combined by straightforward concatenation. 

Both merge sort and quicksort divide the problem into two halves . In 
merge sort , the two subproblems are guaranteed, by the way they are gener
ated, to be half the size of the original problem. There is no such guarantee 
for quicksort since the relative size of the sublists depends upon the value 
of the first element x of the original list . In particular, if x is the minimum 
value, then the first sublist will be empty, while the other list will contain 
everything except x. If the original list is already sorted, then the same phe
nomenon will arise at every division stage of the algorithm. Hence, in the 
worst case, quicksort requires quadratic time and we therefore have: 
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However, the expected performance of quicksort is better than quadratic. 
On the average, we can expect that , at every division stage, each sublist 
will be about half as long as the original list . If we let T�ort (n) denote the 
average case performance (under a suitable formalisation of what constitutes 
an average case),  then we have: 

For a thorough discussion of average case analysis ,  and the proof that the 
above claim holds , the reader should consult Knuth [10] . 

From the preceding discussion we see that it is desirable, when designing 
a divide and conquer algorithm, to ensure that the subproblems are roughly 
equal in size. Even more important , it is vital to guarantee that the sub
problems are smaller than the original problem. If the subproblem has the 
same size as the original problem, then no progress will be made, and the 
algorithm will enter an infinite loop. Both merge sort and quicksort ensure 
that the subproblems are indeed smaller than the original. In merge sort , 
this happens since n div 2 < n whenever n > 1 .  In quicksort , this happens 
since the first element is removed from consideration each time. 

6.4.2  Multiplication 

As a second application of divide and conquer, consider the problem of multi
plying two positive integers x and y, each represented as a list of n digits .  We 
considered essentially this problem in Section 4.2 .3 where a straightforward 
O( n2 )  algorithm was given. This consisted of forming a list of n partial sums, 
each sum being the result of multiplying x by a single digit of y ,  and then 
adding the partial sums together, shifting appropriately. Since each partial 
sum is a list of n or (n + 1) digits ,  adding them all together requires O (n2)  
steps. 

Suppose that , instead of multiplying by a single digit , we split x and y 
into equal-length halves: 

x = xl lOn/2 + Xo 
y = Yl lOn/2 + Yo 

where, for simplicity, we assume that n > 1 is an exact power of two. We 
have: 

x X Y = Z2lOn + zl lOn/2 + Zo 
where Z2 = Xl X Yt 

Zl = xt X Yo + Xo X Yl 
Zo = Xo x Yo 

This equation shows that the problem of multiplying two n-digit numbers can 
be solved in terms of four multiplications of two n/2-digit numbers. Now, 
multiplying a number by a power of 10 means shifting its representation by 
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adding an appropriate number of zero digits ,  an operation that takes linear 
time. Furthermore, adding two n-digit numbers also requires O(n) steps. 
Thus the time T( n) for performing multiplication by this divide and conquer 
approach satisfies: 

T(n) = 0(1) ,  if n = 1 
= 4T(n/2) + O(n) ,  if n >  1 

The reader should compare this recurrence relation with the one for merge 
sort . Here there are four subproblems of size n/2, while in the sorting problem 
there were only two. The recurrence can be solved by use of the following 
general result (whose proof is omitted): 

Suppose T satisfies: 

T(n) = 0(1) ,  if n � 1 
= aT(n/b) + O(n) ,  if n >  1 

for positive integers a and b . Then we have: 

T(n) O(n) ,  
= O(n log n), 
= O(nlogb a ) ,  

if a < b 
if a = b 
if a >  b 

With merge sort we have a = b = 2, so Tmsort (n) = O(n log n) . With mul
tiplication we have a = 4 and b = 2 and, as log2 4 = 2 ,  we have T(n) = 0(n2 ) .  
Thus the time required by the divide and conquer algorithm is asymptoti
cally no better than the naive method of multiplication, and we appear to 
have gained nothing. 

However, there is a small improvement to the algorithm that leads to a 
dramatic improvement in efficiency: replace the definition of Zl in the above 
equation for x X y by the equivalent alternative: 

With this revision there are now only three multiplications of n/2-digit num
bers. The price paid for removing one multiplication is that there is one 
more addition and two new subtractions. But since adding or subtracting 
two n-digit numbers requires O( n) steps, we now have: 

T(n) = 3T(n/2) + O(n) 

in the case n >  1. Since log2 3 = 1.59 . . , we obtain: 

The new version of the divide and conquer algorithm is therefore asymptot
ically superior by a factor of nO.4 • 
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So, if the new method is substantially faster, why is it not taught in 
schools? The answer, as we said in Section 6 .1 ,  is that asymptotic analysis 
describes the behaviour of an algorithm only in the limit. The constants of 
proportionality are such that the naive method performs much better than 
the divide and conquer algorithm for small values of n. Although computers 
may be required to multiply lOO-digit numbers, children rarely are, and, for 
them and us, the simple algorithm is best . 

6.4.3 Binary search 

Our last example of a divide and conquer algorithm concerns searching. In 
its simplest form, the problem of searching can be expressed in the following 
way: given integers a and b and a (total) predicate p, find the smallest x 
in the interval [a . .  b] such that (p x) holds. We can translate this informal 
specification directly into an executable definition: 

find p a b = min [x I x +- [a . .  b] ; p x] 

Although it expresses what is wanted in the clearest possible way, this def
inition does not lead to the most efficient algorithm. The reason for this is 
that the function min is strict , demanding complete evaluation of its argu
ment , and so (p x) is evaluated for every x in the range a ::; x ::; b. Setting 
n = #[a . .  b] , we therefore have that (find p a b) requires n evaluations of p. 

A superior algorithm is obtained just by replacing min with hd in the 
above definition . This step is justified by the fact that the first satisfactory 
value encountered is the smallest one existing in the given range. The new 
version of find requires between 1 and n evaluations of p, depending on the 
precise values of a and b . 

It is possible to do even better if p is  known to be a monotonic predicate. 
We say p is monotonic if: 

(p x = True /\ x < y) implies p y = True 

for all x and y. In other words, once p becomes true for a value x it remains 
true for all values greater than x .  

Let u s  combine the idea of searching with a monotonic predicate with a 
divide and conquer approach. Suppose we split the interval [a . .  b] , where 
a < b, into two equal halves [a . .  m] and [m+  1 . . b] , where m = (a + b) div 2. 
The reader should check that if a < b, then each of these intervals has a length 
strictly smaller than #[a . .  b] . Now, either p m = True or pm  = False (since 
p is assumed to be total). In the first case, the search for the smallest value 
satisfying p can be confined to the interval [a . .  m] . Furthermore, if p is 
monotonic and p m = False, then there are no values in the range [a . .  m] 
that satisfy p. This means that , in the second case , the subsequent search 
can be confined to the interval [m + 1 . . b] . In either case, we can continue 
searching in an interval of roughly half the size of the original. 
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I algorithm I subproblems I size I complexity I 
Binary search 1 n/2 O (log n) 
Mergesort 2 n/2 O(n log n) 
Quicksort 2 variable 0(n2) 
Multiplication 3 n/2 0 (n1 .59) 
Multiplication 4 n/2 0(n2) 

Table 6 . 1 Divide and conquer algorithms . 

Here is the modified definition of find: 

find p a b a,  
= find p a m, 
= find p (m + l) b ,  

where m = ( a + b) div 2 

if a = b I\ p  a 
if a < b 1\ p m  
if a < b 1\ 0p m 

Note that , as with the earlier definitions , (find p a b) returns ..1 if there is no 
value in the range [a . . b] satisfying p. 

The running time T( n) of the new algorithm satisfies : 

T(n) = 0( 1 ) , if n = 1 
= T(n/2) + 0(1 ) ,  if n >  1 

This recurrence relation can be solved to give: 

T(n) = O(log n) 

In other words, the divide and conquer technique leads to a logarithmic time 
algorithm for searching with a monotonic predicate. 

Summary. We have discussed five divide and conquer algorithms and their 
properties are summarised in Table 6 . 1 .  With the exception of quicksort and 
the first multiplication algorithm, the divide and conquer technique leads 
to solutions that were asymptotically more efficient than the first solutions 
given for the problems. Quicksort is also more efficient than insertion sort , 
but only on the average. 

Exercises 

6 . 4 . 1  Suppose we define: 

minimum = hd . isort 

Show that (minimum xs) requires O (n) reduction steps , where n #xs . 
Now consider defining minimum by: 

minimum = hd . msort 
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Does this also give an O(n) algorithm? 

6.4.2 Yet another definition of the function insert in insertion sort is as 
follows :  

insert x foldr swap [xl 
swap x (y : ys) = x :  y : ys , 

= y :  x :  ys , 
if x ::; y 
otherwise 

Prove by structural induction that : 

sorted xs implies sorted ( insert x xs) 

where (sorted xs) is the condition that xs is in non-decreasing order. 

Suppose Cinsert (  n) denotes the number of comparison operations required by 
insert on a list of length n. Show that : 

Hence calculate Ci8ort (n) . 

6 .4.3 Let Cmerge ( m, n) denote the number of comparison operations required 
by merge to merge two sorted lists of length m and n. Calculate an upper 
bound for Cmerge (m, n) . 

6 .4.4 What is wrong with the following definition of msort? 

msort xs = xs , if n = 0 
= merge (msort us) (msort vs) , otherwise 

where n = #xs 
us = take (n  div 2) xs 
vs drop (n  div 2) xs 

6.4.5 Consider the function rank defined by: 

rank xs k = (sort xs) ! k 

In other words, (rank xs k) is the kth element of xs in order of size. By 
replacing sort by qsort in this definition, synthesise a new definition of rank 
and estimate its time complexity. 

6.4.6 As one practical application of sorting, consider the KWIC (Keyword 
in Context) problem. Given is a text that consists of a list of titles, one per 
line. For example: 

Citizen Kane 
Charlie Bubbles 

Duck Soup 
Casablanca 
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Required as output is an alphabetised list of titles sorted on each word. For 
example: 

Bubbles . Charlie 
Casablanca. 
Charlie Bubbles . 
Citizen Kane. 
Duck Soup. 
Kane. Citizen 
Soup. Duck 

Note the insertion of a full-stop character on each line to permit recovery of 
the original title . The procedure for solving the KWIC problem is 

1 .  Break the text into lines - giving a list of titles ; 

2. Break each title into a list of words ; 

3. Generate the list of all rotations of all titles ; 

4. Sort this list on first words; 

5. Output the result , one title per line. 

Using the functions words , lines and unparse designed in Section 4.3,  and a 
suitably generalised sorting function, design a function kwie that solves the 
problem. Modify your solution so that kwie takes an extra argument - a 
list ws of "inconsequential" words (such as "and" , "of" , and "the" ) - and 
produces only that sublist of rotated titles whose first word is not in ws. 

6.4.7 Using a divide and conquer approach, show that the maximum and 
minimum values in a list of n elements can together be determined in no 
more than 3n/2 comparison operations. 

6.4.8 The product of two complex numbers a + ib and e + id is given by 
(ae - bd) + i(ad + be) . This involves four ordinary multiplications . Find 
another method which uses only three multiplications. 

6.4.9 Consider the following variant of the basic search problem: given an 
integer a and a total predicate p, find the smallest x ,  with a ::::; x ,  such 
that (p x ) holds. The difference here is that the search is not confined to 
a bounded interval. Using infinite lists (which will be discussed in the next 
chapter) , one solution can be formulated in the following way: 

find p a = hd [x I x � [a . . J ;  p xJ 

If find p a = a + n, then O (n) evaluations of p will be required to discover 
the answer. 

If p is monotonic, then the number of evaluations of p can be reduced 
to O (1og n) steps. How? (Hint: Consider a search that tries the values 
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a, 2a, 4a, . . .  , 2ka, . . .  until some value b = 2ta is found satisfying p (assume 
a >  0) . )  

6.4.10 Suppose minout xs , where x s  is a list of distinct natural numbers, 
returns the smallest number not in xs . Using a divide and conquer approach, 
show how to compute minout in linear time. 

6 . 5  Search and enumerat ion 

In the previous section we considered the simple problem of searching an in
terval. The more general problem of combinatorial search involves searching 
for combinations of objects that satisfy a given property. Two such prob
lems, both well-known puzzles , are treated in this section. In particular, we 
show how the traditional method of 'backtracking', often used to solve such 
problems, can be implemented by a technique known as 'list of successes'. 
We also explore how variations in the approach can affect efficiency. 

6.5.1  Eight queens 

Our first puzzle is the Eight Queens problem. Given a chessboard and eight 
queens ,  one must place the queens on the board so that no two queens hold 
each other in check; that is , no two queens may lie in the same row, column, 
or diagonal. A solution to this problem is shown in Figure 6. 1 .  

8 
7 
6 
5 
4 
3 
2 
1 

• 

• 

• 

• 

• 

• 

• 

• 

1 2 3 4 5  6 7 8 

Figure 6.1 A solution to the Eight Queens problem. 

A moment 's thought reveals that each column (and each row) must con-
. tain exactly one queen, so one way to find a solution is as follows . Place a 

queen in the first column: any position will do. Then place a queen in the 
second column: any position not held in check by the first queen will do. 
Then place a queen in the third column: any position not held in check by 
the first two queens will do. Continue in this way until all eight queens have 



162 EFFICIENCY 

been placed. If at any point it is impossible to place a queen in column m + 1 
(because all positions are in check) , then 'backtrack' :  reapply the method to 
find a different legal position for the queens in the first m columns , and try 
again. 

To formalise this solution, we need a way to represent a board containing 
queens in the first m columns . We do so by a list of length m, giving for each 
column the row in which its queen appears . For example, the list : 

[4, 6 , 1 , 5 , 2 , 8 , 3 , 7] 

represents the solution in Figure 6 . 1 .  We will also write (i , j ) to stand for a 
queen located in column i and row j . Thus , the list above represents queens 
at coordinates ( 1 , 4) , (2 , 6 ) ,  (3 , 1) , and so on. 

To extend a placement p by adding a queen in row n we simply write 
p * [n] j this places the new queen in column (#p + 1) .  This extension is safe 
if no queen in the placement p puts the new queen in check: 

safe p n = and [--,check (i , j ) (m, n) I (i , j ) - zip ( [l . . #p] , p)] 
where m = #P + 1 

Two queens at coordinates (i , j ) and (m, n) will hold each other in check if 
they are in the same row or either of two diagonals : 

check (i , j ) (m, n) = (j = n) V (i + j = m + n) V (i - j = m - n) 

We do not need to test whether two queens are in the same column, because 
our representation guarantees that this cannot occur. 

Because of 'backtracking' we may need to consider several different ways 
of placing queens in the first m columns .  We represent this by designing a 
function queens m that returns all placements queens in the first m columns 
such that no two queens are in check: 

queens 0 
queens (m + 1) 

= [[ I I 
[p * [n] 1 p - queens mj n - [1 . .  8] j  safe p n] 

In words , there is exactly one placement of no queens , represented by the 
empty list . Each placement of ( m + 1) queens consists of a placement p of 
m queens , plus a new queen placed in some row n from 1 to 8 , such that the 
new queen is safe from check by any queen in p. 

If we want to  find just one solution to the Eight Queens problem, then 
the first will do as well as any other: 

? hd (queens 8) 
[1 , 5 , 8 , 6 , 3 , 7, 2 , 4] 

If we prefer to find all solutions , then just typing queens 8 does the trick. 
As it happens, there is a total of 92 solutions . Because of the way queens is 
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written, these solutions are produced in lexical order: all solutions beginning 
with 1 are printed before all solutions beginning with 2, and so on. 

Note that the concept of 'backtracking' has disappeared from the final 
program. Instead of thinking in a dynamic way of generating one solution 
and then another, we think in a static way of generating a list of all possible 
solutions. The name 'list of successes' has been coined to describe this tech
nique. Because outermost reduction is used, only those parts of the lists that 
are actually needed will be computed. Thus, printing just the first solution 
requires less work than printing all the solutions. (For a particular run on 
an actual system, computing the first solution hd (queens 8) required only 6 
per cent of the time to compute all solutions queens 8.) 

6.5.2 Search order 

We now consider two ways of changing the order in which solutions are 
searched: switching the order of generators in the list comprehension, and 
permuting the order in which solutions are enumerated. The first dramati
cally increases the time required to find the first solution, while the second 
may dramatically reduce it . In both cases, the time to find all solutions 
remains virtually unchanged. 

Generator order . An obvious variation of the previous program is: 

sneeuq 0 
sneeuq (m + 1) 

= [[ ll 
= [p * [n] 1 n +- [1 . .  8] ; p +- pS i safe P n] 

where ps = sneeuq m 

This reverses the order of the two generators in the list comprehension. The 
call of sneeuq m has been brought out into a where clause , since otherwise it 
would be recomputed once for each value of n. 

Clearly, sneeuq finds the same solutions as queens, but it  finds them in a 
different order. The first solution it finds is : 

? sneeuq 8 
[4, 2, 7, 3 , 6, 8 , 5 , 1] 

This is exactly the reverse of the first solution found by queens . It is not 
hard to see why: whereas queens first considers all solutions beginning with 
1 , then beginning with 2, and so on, sneeuq first considers all solutions ending 
with 1 , then ending with 2, and so on. Symmetry guarantees that the reverse 
of every solution is itself a valid solution. In general, we have that: 

queens m = map reverse (sneeuq m) 

for every m from 0 to  8. 
Which is faster, queens or sneeuq? If we want to find all solutions, then it 

is not hard to see that both must perform essentially the same computations , 
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and hence require essentially the same amount of time. (This is confirmed 
by a run on an actual system, which shows that the two times are within 3 
per cent of each other.) 

On the other hand, if we want to find only the first solution, then it is not 
immediately clear what their relative speeds will be. Since cleverness fails 
us, let us try a run on an actual system - 10 and behold, it turns out that 
queens is more than ten times faster than sneeuq ! Since both take equally 
long to find all solutions, this means that sneeuq takes a long time to find 
the first solution and then finds the remaining solutions relatively quickly, 
while queens divides the work more evenly. In particular, the actual runs 
reveal that sneeuq takes 80 per cent of its time to find the first solution, as 
compared to only 6 per cent for queens . 

This behaviour is due purely to the reversal in generator order. To com
pute sneeuq (m + 1) , for each n from 1 to 8, the list sneeuq m is scanned for 
a placement p such that safe p n is true. Now, the first element of sneeuq 8 is 

[4, 2 , 7, 3 , 6 , 8 , 5 , 1] 
This ends in a 1 , so it must have been found on the first scan of sneeuq7. How 
far did the list sneeuq 7 have to be scanned? Well, the element of sneeuq 7 
that was found is: 

[4, 2, 7, 3, 6 , 8 , 5] 
This ends in a 5, so it must have been found on the fifth scan of sneeuq 6 . 
Further, all solutions ending in a i , 2, 3 , or 4 must appear before this solution 
in the list sneeuq 7. So, to find the first element of the list sneeuq 8 required 
generating over half of the list sneeuq 7, and generating all of the list sneeuq6. 
Once the lists sneeuq 7 and sneeuq 6 are generated they are saved (by the 
where clause) ,  so this explains why proportionately so much of the work goes 
into finding the first solution . 

In contrast , to compute queens (m + 1) , for each p in the list queens m, 
each n from 1 to 8 is tested to see if safe p n is true. Only a small fraction of 
the list queens 7 needs to be examined before the first solution is found, and 
this in turn requires examining only a small fraction of the list queens 6. So 
the work of finding the first solution is a relatively small proportion of the 
work of finding all solutions .  

Enumeration order. As noted, queens 8 first returns all solutions begin
ning with 1 , then all solutions beginning with 2, and so on. As it turns out ,  
there are many more solutiontS beginning with a 4 than there are solutions 
beginning with a 1 .  Therefore, if we only want to find one solution, it may 
be better to enumerate solutions starting from row 4 rather than row 1 .  We 
can modify queens to accomplish this as follows : 

queens4 0 = [[ II 
queens4 (m + 1) = [p * [n] 1 p +- queens4 mj n +- ns j safe p n] 

where ns = [4 . .  8] * [1 . . 3] 
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A run confirms that this finds the first solution in only 14% of the time 
required by queens. 

It was possible to find the first solution faster simply because the part of 
the solution space enumerated first (that is, solutions with the first queen in 
column 4) contains more solutions. Moral: if one is searching for a needle in 
a haystack, look in the part of the haystack that contains more needles . 

Of course, this does no good if one wants to find all the needles in the 
haystack, and indeed, queens4 is no faster than queens if one wants to find 
all solutions to the Eight Queens problem. 

6.5.3 Instant insanity 

Our second puzzle is marketed under the name 'Instant Insanity' .  It consists 
of four cubes , with faces coloured blue, green, red, or white . The problem is 
to arrange the cubes in a vertical pile such that each visible column of faces 
contains four distinct colours .  Like Eight Queens , we may solve this puzzle 
via backtracking. 

We will represent a cube by listing the colours of its six faces in the 
following order: up , front , right , back, left , down. Each colour is indicated 
by a letter: blue ( 'B') ,  green ( 'G') ,  red ('R') , and white ( 'W') . Hence, each 
cube is represented by a string of six letters. The four cubes in the marketed 
puzzle are represented by: 

cubes = ["BGWGBR" , "WGBWRR" , "GWRBRR" , "BRGGWW"] 

Thus , the first cube is blue on top, green in front , and so on. 
A cube must be oriented before placing it in the pile. The orientation of a 

cube can be changed by rotating it (through 90 degrees, leaving up and down 
in place) ;  twisting it (about an axis extending from the up/front/right corner 
to the back/left/down corner) ;  or flipping it (exchanging up and down, front 
and left , back and right) .  

rot ['1.1. , / , r , b , 1 ,  d] 
twist ['1.1. ,/ , r , b , 1, d] 
flip ['1.1. ,/ , r , b , 1 ,  d] 

= [u , r , b , I , / , d] 
[j , r , '1.1. , 1 , d, b] 

= [d , l , b , r, / , u] 
Rotating a cube four times brings it back to its original position, as does 
twisting it three times , or flipping it twice. Hence there are 24 = 4 X 3 X 2 
different ways to orient a cube: 

orientations e = [elll I e' f- [e, rot e , rot (rot c) , rot (rot (rot e))] ; 
e" f- [e' , twist e' , twist ( twist e')] ; 
elll f- [ell , flip ellll 

Once a cube is placed in a pile, only its sides (front , right , back, left) will 
be visible: 

visible [u , / , r , b , l , d] = [J, r , b , l] 
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Two cubes are compatible if they have different colours on every visible side: 

compatible c c' = and [x =f:. x' I (x ,  x') +- zip ( visible c, visible c')] 

It is allowed to add a cube c to a pile of cubes cs if it is compatible with 
every cube in the pile: 

allowed c cs = and [compatible c c' I c' +- cs] 

Since we are using the 'list of successes ' method, we will design a function 
solutions cs that returns a list of all ways of orienting each cube in cs so that 
no side of the pile has two faces the same. 

solutions [ ]  = [ [ ] ] 
solutions (c : cs) = [c' : cs' I cs' +- solutions CS j  

c ' +- orientations Cj 
allowed c' cs'] 

In words, there is only one solution for an empty pile of cubes , namely the 
empty pile itself. Each solution for a pile (c : cs) consists of a solution for 
the pile cs , and an orientation of the cube c that is an allowed extension of 
this pile. 

Summary. We have presented programs that use backtracking search to 
find solutions to two well-known combinatorial puzzles . The backtracking al
gorithms have been implemented using a technique called 'list of successes ' .  
Although this technique returns a list of all solutions to the problem, outer
most reduction enables the first solution to be computed in a fraction of the 
time required to compute all solutions . Altering the search order can make 
a dramatic difference in the time to find the first solution, though the time 
to find all solutions remains unchanged. We will see additional applications 
of the 'list of successes ' technique in Chapter 9 .  

Exercises 

6 . 5 . 1  Because no two queens may appear in the same row, safe p n returns 
false if n appears in the list p. Therefore, it is safe to draw n from the 
list [1 . .  8] with elements appearing in p removed. Modify the definitions of 
queens, safe , and check to take advantage of this observation. 

6 . 5 . 2  Could the modification suggested by the previous exercise also be ap
plied to sneeuq? 

6 . 5 . 3  Every solution to the Eight Queens problem remains a solution after 
reflection through a vertical, horizontal, or diagonal line through the middle 
of the boardj or after the board is rotated about its middle by 90 degrees. 
Write functions to convert a placement p into the placements corresponding 
to each of these transformations . 
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6 . 5 .4 Use reflection through a horizontal line to write a program that finds 
all solutions to the Eight Queens problem twice as quickly as queens. Would 
it be as easy to use reflection through a vertical line in this way? 

6 . 5 . 5  Use backtracking to write a program that finds all solutions to the 
Eight Queens problem that are symmetric around a diagonal. 

6 . 5 . 6  The following program computes the length of ( queens i) for each i 
from 0 to 8 : 

[#(queens i ) I i +- [0 . .  8] ] 
This program is wasteful, because the computation of, say, ( queens 8) will re
compute ( queens7) , which has already been computed. Write a more efficient 
program to compute the same result . 

6 . 5 . 7  Why might one suspect that there would be more solutions to the 
Eight Queens problem that have the first queen in row 4 than have the first 
queen in row I? 

6 . 5 .8 We can further explore the advantages of different search orders, using 
a function rowqueens nss that takes a list of lists specifying for each column 
the order in which its rows should be tried. For example, the search order 
used by queens4 is duplicated by: 

rowqueens ( copy 8 ( [4 . .  8] * [1 . .  3] ) ) 

A search that tries row 4 first for column 1 ,  and tries the rows in the order 
[1 . .  8] otherwise, is specified by: 

rowqueens ( ( [4 . .  8] * [1 . .  3] ) : copy 7 [1 . .  8] ) 

Write rowqueens. 

6 . 5 . 9  The program solutions finds each solution to the Instant Insanity prob
lem four times , each time rotated through 90 degrees . Modify solutions to 
find each solution only once. 

6 . 5 . 1 0  Write a function that takes a pile of cubes cs and returns a list of 
the faces visible on each of the four sides of the pile. 

6 . 5 . 1 1  A Magic Square of size n consists of the numbers from 1 to n2 ar
ranged in a square array such that the sum of any row, column, and diagonal 
is the same. Here is a Magic Square of size 3, the sum of each row, column, 
and diagonal being 15 :  

6 7 2 
1 5 9 
8 3 4 

Design a program that finds Magic Squares . 
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6 . 5 . 1 2  There is a (unique) 9-digit number x with the following properties : 
(i) each of the digits 1 to 9 appears exactly once in X j  (ii) For 1 ::; n ::; 9 
the number formed by taking the first n digits of x is exactly divisible by n .  

With pen and paper and a little intelligence, it  is  fairly easy to discover x ,  
but write a program instead. 

6 . 5 . 1 3  A crypt-arithmetic puzzle consists of three words, containing no more 
than ten different letters, arranged thus: 

F O UR 
+ F I VE 

N I NE 

The problem is solved by giving a mapping of letters to digits such that the 
result is a valid statement of arithmetic . For example, the above problem is 
solved by the mapping: 

E -+ 3 j F -+ 2j I -+ 4j N -+ 5j 0 -+ 9j R -+ OJ U -+ 7j V -+ 8 

Design a program that solves crypt-arithmetic puzzles . 



Chapter 7 

Infinite List s  

Lists can be infinite as well as finite. In this chapter we shall describe some 
basic operations on infinite lists ,  show how they can be characterised as 
the limit of a sequence of approximations, and develop proof methods for 
reasoning about their properties , including a way to extend the principle of 
structural induction. We shall also give some illustrative applications.  In 
particular, infinite lists can be used to model sequences of events ordered 
in time, so they provide a suitable framework in which to study interactive 
processes. 

7. 1 Infinite lists 

Just as the finite list of integers from m to n is denoted by [m . .  n] , the 
infinite list of all integers from m upwards is denoted by [m . .  ]. Thus, in a 
session one might have: 

? [1 . . ] 
[1, 2, 3 , 4, 5 , 6 , 7, 8 , 9 , 10, 11 , 12, 13, 14, 15 , 16, {interrupted} 

? 

Here, the user requested the computer to print the list of all integers starting 
from the number 1 .  Clearly it would take forever to print this list in full. 
After the first few elements of the list were printed the user got bored and 
hit the 'interrupt '  key, which caused the computer to stop printing the list, 
type "{interrupted}" and wait for a new expression. 

Infinite lists can be used just like any other lists in a program. A function 
can take an infinite list as an argument or return an infinite list as a result . 
For example, the following statements about infinite lists are all true: 

take n [1 . . ]  = [1 . . n] 
[m . .  ] ! n  = m + n  

map factorial [1 . .  ] = scan ( x )  1 [1 . .  ] 

169 
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It is also possible to use infinite lists in list comprehensions . For example, 
the expression: 

[x - 2 1 x +- [1 . .  ] ;  odd x] 

denotes the list of all odd squares . 
It is even possible to have an infinite list of infinite lists . For example, if 

we define: 

powertable = [[m - n 1 m +- [1 . .  ]] 1 n +- [2 . . ]] 

then powertable is an infinite list , each element of which is also an infinite 
list : 

powertable = [ [1 , 4, 9 , 16, 25 , . . .  ] ,  
[1 , 8 , 27, 64, 125, . . .  ] ,  
[1, 16, 81 , 256 , 625 , . . .  ] ,  
. . .  ] 

Displaying a structure like powertable is problematic. If we type powertable 
in a session, then the computer will never get past trying to print the first 
row: 

? powertable 
[[1 , 4, 9 , 16, 25, {inte1TUpted} 

However, we can always see the second row by selecting it explicitly: 

? powertable ! 1 
[1 , 8, 27, 64, 125, {inte1TUpted} 

The other rows of powertable can be displayed in a similar manner. 
It is important not to assume that infinite lists in computing have the 

same kinds of properties as infinite sets do in conventional mathematics . For 
example, in set theory one might write: 

{x2 1 x E {1, 2 , 3 , 4, . . .  }; x2 < 1O} 

to stand for the set of all squares that are less than 10 , and this expression 
denotes the finite set { 1 , 4, 9} . However, if we type the corresponding list 
comprehension in a session then we get : 

? [x - 2 1 x +- [1 . .  ] ;  x - 2  < 10] 
[1, 4, 9 

What has happened here is that the computer finds the first three elements 
and then goes into an infinite loop searching for some element in the infinite 
list [4, 5 , 6 ,  . . . ] whose square is less than 10. Although it is reasonable to 
expect a mathematician to recognise that there is no such value, it is not 
reasonable to expect the same degree of sophistication from a computer pro
gram. In other words , we do not suppose that a m�chanical evaluator is 
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capable of conducting proofs, however trivial they might be. This does not 
mean that the behaviour of the computer is 'unmathematical', only that set 
theory is not the right theory for describing computations. A suitable theory 
will be presented later, and we shall see that we can give a precise value 
to the above expression without lapsing into informal explanations like 'and 
then it goes into an infinite loop' .  In particular, the above expression has the 
precise value 1 : 4 : 9 : 1.. 

Incidentally, it is not difficult to modify the list comprehension so that it 
does return a proper list of all squares less than 10. Using the rules described 
in Chapter 3 ,  we can can convert the comprehension into the equivalent form: 

filter « 10) ( map (�2) [1 . .  ] )  

and changing the filter to takewhile yields the desired result : 

? takewhile « 10) (map (2) [1 . .  ] )  
[1, 4, 9] 

This works because takewhile stops scanning as soon as an element is found 
that does not satisfy the predicate, whereas filter scans the entire list . In 
effect , the mathematician's knowledge that one can stop looking as soon as 
the first square greater than 10 is encountered is here encoded in the choice 
to use takewhile to write the expression. 

Exercises 

7 . 1 . 1  Write a program that prints the infinite text: 

1 sheep , 2 sheep, 3 sheep , 4 sheep, . . .  

as an aid for insomniacs . 

7 . 1 .2 Can every element of powertable be printed by first concatenating with 
concat? Define an infinite list powerlist that does return a list of all powers 
(greater than one) of all positive integers. 

7 . 1 .3 If: 

cubes = [i � 3 1 i - [1 . .  ]] 

what are the values of (64 in cubes) and (65 in cubes)? 

7.2 Iterate 

Recall that in mathematics , the notation fn denotes a function composed 
with itself n times; thus fO = id, P = f, P = f ' f , P = f · f ' f , and so 
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on, where id is the identity function. In our notation we will write In as 
(power I n). One way to define power is by the equations :  

power / 0  
power / (n + 1) 

= id 
= / · power / n  

Observe that r is similar in form to xn ,  which denotes a number multiplied 
by itself n times, but one should be careful not to confuse the two. 

The function iterate is defined informally as follows:  

iterate / x = [x ,l x , j2x , j3x, . . .  ] 

Thus iterate takes a function and a starting value and returns an infinite list .  
For example: 

iterate (+1)  1 = [1 , 2 , 3 , 4, 5, . . .  ] 
iterate ( x 2) 1 = [1 , 2, 4, 8 , 16, 32, . . .  ] 

iterate (divlO) 2718 = [2718, 271, 27, 2, 0 , 0 ,  . . .  ] 

We also have: 

[m . .  ] = iterate (+l) m 
[m . . n] = takewhile (� n) (  iterate (+1)  m) 

These equations provide one way of defining the notations [m . .  ] and [m . . n) . 
In the second equation, takewhile is used to truncate the infinite list to a finite 
list. 

Here are some more examples of the use of iterate . First, the digits of a 
positive integer can be extracted by the function digits defined as follows :  

digits = reverse · map (mod10) · takewhile (i 0) · iterate (div10) 

For example: 

digits 2718 
= (reverse · map (mod10) · takewhile (i 0» [2718, 271 , 27, 2, 0, 0, . . . ] 
= (reverse · map (modlO» [2718, 271, 27, 2] 
= reverse [8, 1 , 7, 2) 
= [2, 7, 1 , 8] 

Next , consider the function (group n) which breaks a list into segments 
of length n. We have: 

group n = map ( take n) . takewhile (i [ ] ) . iterate ( drop n) 

If the original list does not have a length which is evenly divisible by n, then 
the last segment will have length strictly less than n. 
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As the last two examples suggest , one often finds map ,  takewhile, and 
iterate composed together in sequence. Suppose we capture this pattern of 
computation as a generic function, un/old say, defined as follows: 

un/old h p t = map h . takewhile p . iterate t 

The key feature about un/old is that it is a general function for producing 
lists. Moreover, the functions h, t, and p correspond to simple operations on 
lists. We have: 

hd ( un/old h p t x) = h x 
tl ( un/old h p t x ) = un/old h p t ( t  x ) 

nonnull (un/old h p t x ) = p x 

Thus, the first argument h of un/old is a function which corresponds to hd, 
the third function, t ,  corresponds to tl , and the second function, p,  to a 
predicate which tests whether the list is empty or not . 

A formal, recursive definition of iterate can be given in two ways. The first 
is a straightforward translation of the informal definition given above: 

iterate / x = [power / i x I i +- [0 . . l l  

This definition is rather inefficient , since it computes each of (power / 0 x ) , 
(power / 1 x ) , (power / 2 x ) , and so on, independently. Assuming that an 
application of / can be computed in a constant number of steps, computing 
(power / i x ) requires a number of steps proportional to i. Hence, computing 
the first n elements of ( iterate / x ) requires a number of steps proportional 
to: 

1 + 2 + . . . + n = _
n(

�
n_+_1

-"-
) 

2 
that is, O( n2) steps . 

The second way to define iterate is recursively, as follows: 

For example: 

iterate / x = x :  iterate / (f x) 

iterate ( x2) 1 = 1 :  iterate ( x 2) « x2) 1) 
= 1 :  2 :  iterate ( x 2) « x 2) 2) 
= 1 :  2 : 4 : iterate ( x 2) « x2) 4) 

and so on. Here, each element of the result list is computed by applying / 
once to the previous element , and so the first n elements of (iterate / x ) can 
be computed in O(n) steps.  The function iterate is useful largely because it 
can be computed in this efficient way. Incidentally, notice that iterate and 
scan are similar, in that both compute each element of the output list in 
terms of the preceding element . 
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Exercises 

7.2 .1  What is the value of: 

map (3x )[0 . .  ] = iterate (+3) 0 

when '= ' means denotational equality? What is its value when '= ' means 
computable equality? 

7.2 .2 Use iterate to write an expression equivalent to [a ,  b . .  c] . 

7.2 .3 Define a function showint :: num -+ [char] that, given an integer, 
returns the string that denotes its value. For example, showint 42 = "42" . 
(Don't use show , that would be cheating.) 

7.2 .4 Define the function getint : :  [char] -+ num that is the inverse of 
showint . For example, getint "42" = 42 . (This doesn't use infinite lists . )  

7.3 Example: generating primes 

The Greek mathematician Eratosthenes described essentially the following 
procedure for generating the list of all prime numbers: 

1. Write down the list of numbers 2 , 3 ,  . . .  j 

2. Mark the first element p of this list as primej 

3. Delete all multiples of p from the list j 

4. Return to step 2.  

As a description of an algorithm, the above procedure appears highly 
unconventional: not only does the process as a whole not terminate, the first 
and third steps do not terminate either. It would seem that to implement 
Eratosthenes ' method requires the creation of an infinite number of infinite 
processes. 

Here is a diagram showing the first few steps of the algorithm: 

_2_ 3 --L 5 _6_ 7 _8_ 9 J!L 11 JL 13 J£ 15 
_3_ 5 7 _9_ 11 13 -11L 

--L 7 11  13 
_7_ 11 13 

In each line a bar has been drawn under every pth position, where p is the 
prime number that begins the line . One can think of these bars as forming 
an infinite 'sieve' ,  which sifts the list of all numbers (poured into the top) 
until only primes are left . For this reason the method is usually called 'The 
Sieve of Eratosthenes ' .  
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Eratosthenes' sieve is remarkably easy to describe as a functional pro
gram: 

primes = map hd ( iterate sieve [2 . . ] )  
sieve (p : xs) = [x I x - XS j x mod p :j; 0] 

This defines primes to be the infinite list of all prime numbers . The program 
is, more or less, a direct translation of the English description. Step 1 is 
represented by the term [2 . .  ]' the cumulative effect of Step 2 by the term 
map hd, Step 3 by the function sieve, and Step 4 by the function iterate. 
Notice that the term (iterate sieve [2 . . ] )  generates an infinite list of infinite 
lists .  

Having defined primes as an infinite list , one can choose which portion 
of it to evaluate as a separate logical step . For instance, the first 100 primes 
will be generated by evaluating: 

take 100 primes 

Similarly, we can obtain all the primes less than 100 by evaluating: 

takewhile « 100) primes 

By freeing the generation of primes from the constraints of finiteness , we 
obtain a modular definition on which different 'boundary' conditions can be 
imposed in different situations . 

It might appear that the construction of primes through the intermediary 
of an infinite list ofinfinite lists leads to a definition which is less efficient than 
it might otherwise be. Of course, these component lists are not computed 
in their entirety, but only in parts as and when evaluation demands. Well , 
let us try and improve the efficiency of the definition. Suppose we rewrite 
primes in the form: 

primes 
rsteve xs 

rsieve [2 . . J 
map hd ( iterate sieve xs) 

This is certainly no more efficient than the original version, but it serves as 
the starting point for a little massage. First , we have: 

rsieve (p : xs) = map hd ( iterate sieve (p : xs» 

by instantiating (p : xs) for xs in the definition of rsieve . Now, using the 
definition of iterate, the right-hand expression is equal to: 

map hd ( (p : xs) : iterate sieve ( sieve (p : xs» ) 

Using the definition of map and hd , this expression is equal to: 

p : map hd ( iterate sieve ( sieve (p : xs» ) 



176 INFINITE LISTS 

and using the definition of sieve, it becomes: 

p :  map hd ( iterate sieve [x I x +- XSj x mod p '" 0] ) 

Now comes the final, but crucial step . The second term in this expression is 
just another instance of rsieve , so the expression as a whole is equal to: 

p : rsieve [x I x +- XSj x mod p '" 0] 

Essentially, what we have just accomplished is to show that : 

rsieve (p : xs) = p : rsieve [x I x +- XS j x mod p '" 0] 

What is more, we can use this equation as a new definition of rsieve: both 
definitions produce a well-defined list , and the argument above shows that 
they must produce the same list . Starting with one definition of rsieve we 
have therefore synthesised another . Observe also that the synthesis proceeded 
by a chain of equational reasoning using only the definitions of the functions 
appearing in the definition. The second definition uses recursion explicitly, 
while the former does not . On the other hand, the new definition does not 
involve the creation of an infinite number of infinite lists ,  and is therefore 
slightly more efficient . 

Exercises 

7.3 . 1  Write a program to find the first prime number greater than 1000. 

7.3.2 Consider the two functions : 

sieve (p : xs) 
sieve' (p : xs) 

= [x I x +- XS j x mod p '" 0] 
xs - - iterate (+p) 0 

Do they compute the same result? Compare the efficiency of the program for 
generating infinite lists of primes using the two definitions of sieve. (Hint : If 
xs is a list that contains no multiples of p, how many steps does it take to 
compute the first n elements of sieve (p : xs) and sieve' (p : xs)?)  

7.4 Infinite lists as limits 

It has already been mentioned that some care is needed when dealing with 
infinite lists. In particular, we noted that the expression: 

filter « 10) (map ("2) [1 . . ] )  

does not have the value [1 , 4 , 9] ,  as one might expect , but rather the value 
1 : 4 : 9 : 1.. In order to understand more clearly why this is so, a theory of 
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infinite lists is required, and that is what this section will provide, at least 
informally. 

In mathematics , one way of dealing with infinite objects is by limits. 
An infinite object may be defined to be the limit of an infinite sequence of 
approximations. For example, the transcendental number 1[' :  

1[' = 3 .14159265358979323846 · . .  , 

is an infinite object in this sense. It can be thought of as the limit of the 
infinite sequence of approximations : 

3 
3 .1 
3 .14 
3 .141 
3 .1415 

The first element of the sequence, 3, is a fairly crude approximation to 1['. 
The next element, 3 .1 ,  is a little better; 3 .14 is better still, and so on. 

Similaxly, an infinite list can also be regaxded as the limit of a sequence of 
'approximations' . For example, the infinite list [1 . .  ] is a limit of the following 
sequence: 

.1 
1 :  .1 
1 :  2 :  .1 
1 : 2 : 3 : .1 

Again, the sequence consists of better and better approximations to the in
tended limit . The first term, .1,  is the undefined element , and thus a very 
crude approximation: it tells us nothing about the intended limit . The next 
term, 1 : .1 is a slightly better approximation: it tells us that the intended 
limit is a list whose first element is 1, but says nothing about the rest of the 
list . The following term, 1 : 2 : .1, is a little better still, and so on. Each suc
cessively better approximation is derived by replacing .1 with a more defined 
value, and thus gives more information about the intended limit. 

Any list ending in bottom, i .e .  any list of the form XI : X2 : • • •  : Xn : .1, will 
be called a partial li8t. Every infinite list is the limit of an infinite sequence 
of paxtial lists .  Thus, we have three kinds of lists :  finite lists ,  which end in 
[ ]  (such as 1 : 2 : 3 : [ ] , also written [1 , 2 , 3] ) ;  partial lists ,  which end in .1,  
(such as 1 : 2 : 3 : .i);  and infinite lists, which do  not end at all (such as 
[1 , 2, 3 ,  . . .  ] ) .  

Now i t  turns out that if :CS1 , :1:82 , :1:83 , • • •  i s  an infinite sequence whose 
limit is :1:8 , and f is a computable function, then f :l:8t , f :1:82 , f :1:83 , • • •  is 
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an infinite sequence whose limit is f xs . This property, called continuity , is 
not true of arbitrary functions, but is true of all computable functions . For 
example, since [1 . .  j is the limit of the sequence given above, we can compute 
map ( x 2) [1 . .  ] as follows:  

map ( x 2) ..L 
map ( x 2) ( 1 : ..L)  
map ( x 2) ( 1 : 2 :  ..L) 
map ( x 2) ( 1 : 2 : 3 : ..L )  

= ..L 
2 :  ..L 
2 :  4 :  ..L 
2 : 4 : 6 : ..L  

The limit of this sequence is the infinite list [2, 4, 6 , 8 ,  . . .  J of positive even 
integers, just ' as we would expect . 

A short word about applying functions to partial lists is in order here. 
No equation defining map matches map ( x 2) ..L because ..L does not match 
either [ j  or (x : xs) . Thus map ( x  2) ..L = ..L and we say this follows from case 
exhaustion on map.  Thus we have: 

map ( x 2) ( 1  : ..L) = ( 1  X 2) : (map ( x 2) ..L) (map.2) 
= 2 : ..L  (map .O) 

where we write (map.O) to indicate case exhaustion on map. The res� of the 
sequence above is evaluated similarly. 

As a second example, filter even [1 . . ] can be computed as follows :  

filter even ..L = ..L 
filter even ( 1  : ..L) = ..L 
filter even ( 1  : 2 : ..L)  = 2 :  ..L 
filter even (1  : 2 : 3 : ..L) = 2 :  ..L 
filter even ( 1  : 2 :  3 :  4 : ..L) = 2 : 4 : ..L  

Again, the limit is the infinite list [2, 4, 6, . . .  j ,  as expected. This gives a 
(simple) example of how an infinite list may be the limit of two different 
sequences. 

Now consider the expression: 

filter « 10) (map (""'2) [1 . .  ] )  

mentioned earlier. By the method above, one can compute that map(""'2) [l . .  ] 
is the limit of the infinite sequence that begins: 

..L 
1 :  ..L 
1 :  4 : ..L  
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Applying filter « 10) to this sequence gives the new sequence: 

filter « 10) 1. 
filter « 10) (1 : 1.) 
filter « 10) (1 : 4 :  1.) 
filter « 10) (1  : 4 :  9 : 1.) 
filter « 10) (1 : 4 :  9 :  16 : 1. )  
filter « 10) (1 : 4 :  9 :  16 : 25 : 1.) 

= 

= 

= 

= 

= 
= 

1. 
1 : 1. 
1 :  4 :  1. 
1 : 4 : 9 : 1.  
1 : 4 : 9 : 1.  
1 : 4 : 9 : 1.  
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Here every element of the sequence after the third is equal to 1 : 4 : 9 : 1. ,  
and so  that must also be the limit of the sequence. So we have shown: 

filter « 10) ( map ("2) [1 . .  ]) = 1 : 4 : 9 : 1. 

as was asserted previously. 
On the other hand, applying takewhile « 10) to the first sequence above 

gives the sequence: 

takewhile « 10) 1. 
takewhile « 10) (1 : 1.) 
takewhile « 10) (1 : 4 : 1.) 
takewhile « 10) (1 : 4 : 9 : 1. )  
takewhile « 10) (1 : 4 : 9 : 16 : 1.) 
takewhile « 10) ( 1 : 4 :  9 :  16 : 25 : 1.) 

= 

= 

= 

= 

= 

= 

1. 
1 :  1. 
1 :  4 :  1. 
.1 : 4 : 9 : 1.  
1 : 4 : 9 : [ ] 
1 : 4 : 9 : [ ] 

and the limit of this sequence is obviously 1 : 4 : 9 : [ ] . This establishes: 

takewhile « 10) ( map ("2) [1 . . ] ) = 1 : 4 : 9 : [ ]  = [1 , 4, 9] 

just as one would expect . These examples show that in addition to sequences 
whose limits are infinite lists, there are also 'degenerate' sequences whose 
limits are partial or finite lists .  

One way to think of an infinite sequence of partial lists is as a description 
of the history of a computation. In these histories , 1. stands for a part of a 
computation that has not yet been completed. As the computation proceeds, 
the approximations get better and 1. is replaced by a more defined value. By 
running the computation long enough - that is, prolonging the sequence -
one can compute as much of the list as may be required. 

The utility of 1. comes from the fact that it denotes a completely undefined 
value, and so one can use it in several ways. First , 1. can denote the result 
of an illegal operation, such as (1 div 0) or hd [ ] . Second, 1. can denote a 
computation that has not yet proceeded far enough to give an answer, but 
may (or may not) give more information later. This is the interpretation to 
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use in sequences of approximations as above. Third, .I.. can denote an infinite 
loop . This is the interpretation to use if .I.. appears in the limit of an infinite 
sequence, as in 1 : 4 : 9 : .I.. in the filter example. The third interpretation is 
really just a refinement of the second: it is the case where the computation 
never does give more information. 

7.5 Reasoning about infinite lists 

Recall that the principle of induction over (finite) lists is as follows. To prove 
by induction that P(xs)  holds for every finite list xs one must show two 
things: 

Case [ ] .  That P([ ] ) holds; and 

Case (x : xs) .  That if P(xs) holds, then P(x : xs) also holds for every x .  

This i s  valid because every finite list has the form Xl : X2 : • • •  : Xn : [ ] ,  and 
so can be built using just ( : )  and [ ] .  

How c an  we extend the induction principle to infinite lists? Well, as we 
have just seen, every infinite list is the limit of an infinite sequence of partial 
lists ,  so let us consider an induction principle for partial lists first. 

It is easy to adapt the previous principle for partial lists .  Just as every 
finite list is built from ( : )  and [ ] ,  every partial list has the form Xl : X2 : • • •  : 
Xn : .1.. , and so is built from ( :) and .1.. . Thus , the same induction principle 
works if we ignore the case for [ ]  above, and show instead: 

Case J... That P(l. ) holds.  

,In fact, one can 'mix and match' cases as convenient : one can prove P( xs) 
for any finite list by showing case [ ]  and case (x  : X8) , for any partial list by 
showing ease l. and case (x : xs) ,  and for any finite or partial list by showing 
case .1.. , case [ ] ,  and case (x : X8) . 

For example, here is a property that is true of partial lists but not of 
finite lists. Observe that : 

( 1 : 2 : .1..) * [3, 4] = 1 : «2 : .1..) * [3, 4] ) (*.2) 

In general we can prove: 

= 1 : 2 : (.1.. * [3, 4] )  (* .2) 
= 1 :  2 ;  .I.. (* .0) 

xs * ys = xs 

for any partial list xs and any (partial, finite or infinite) list ys . 

Proof. The proof is by induction on xs . Since xs is a partial list, the cases 
are .I.. and (x : xs) . 
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Case .L  We have: 

which establishes the case. 

Case (x : xs) .  We have: 

(x : xs) * ys = x : (xs * ys) (*.2) 
= x :  xs (hypothesis) 

which establishes the case. 0 
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So it is easy to extend induction to apply to partial lists . We can further 
extend it to apply to infinite lists as follows. An assertion P is said to be 
chain complete if whenever YSo , YSl '  YS2 " "  is an infinite sequence (or chain) 
with limit ys, and P(yso) , P(YSl ) , P(YS2) , ' "  are all true, then P(ys) is true 
also. Since every infinite list is the limit of a sequence of partial lists , it follows 
that if P( xs) is true for every partial list xs and P is chain complete, then 
P(xs) must also be true for every infinite list xs . Hence, the same induction 
principle as above can be used for infinite lists as well, so long as P is chain 
complete. 

Fortunately, a wide range of predicates are chain complete. In particular, 
any equation el = e2 is a chain complete predicate in xs , where el and e2 are 
any computable expressions involving xs . Also, if Pl (xs) and P2(xs) are chain 
complete predicates, then their conjunction Pl (xs) A P2(  xs) is also a chain 
complete predicate. Thus , most of the proofs in this book involve predicates 
that are chain complete, and so it suffices to use induction to demonstrate 
that the predicate holds for all partial lists , and it follows immediately that 
it holds for all infinite lists as well. 

In particular, we have just shown that the equation xs * ys = xs holds 
for all partial lists xs and arbitrary ys , and so it follows that it holds for 
infinite lists as well. This indeed matches our intuitions about computations. 
If we type [1 . .  j * [3, 4j in a session, we expect to get the same response as 
when we type [1 . .  j ,  namely the infinite list [1 , 2 , 3 ,  . . .  j .  

Most of the laws proved previously hold for infinite lists as well as for 
finite lists .  If we have proved a property for all finite lists xs by verifying the 
cases [ ]  and (x : xs) ,  then we can extend the proof to also cover infinite lists 
by simply verifying the additional case 1.. For example, one of the first laws 
we proved was that concatenation is associative, namely: 

xs * (ys * zs) = (xs * ys) * Z8 

for every list xs , ys, and zs. The proof was by induction on xs , using the two 
cases [ ]  and (x : xs) , and so was valid only for finite list xs . However, we also 
have: 
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which establishes the case for .1, and so the law holds for infinite lists xs as 
well. The original proof used no properties of ys or zs, and so is valid for 
infinite lists ys and zs also. 

Of course, not all laws extend to infinite lists .  For example, we previously 
proved that: 

reverse (reverse xs) = xs 

for all finite lists xs. Indeed, we even have that : 

reverse (reverse .i) = .1 

which seems to extend the law to infinite lists xs . However, a quick glance 
at the proof shows that it uses the auxiliarly result : 

reverse (ys * [xD = x : reverse ys 

for every x and finite list ys. We have: 

reverse (.1 * [x D = reverse .1 = .1 t x : .1 

and so the auxiliary result does not hold for infinite lists ys, and hence the 
main result does not hold for infinite lists xs . It is left as an exercise for 
the reader to show that reverse xs = .1 for any infinite list xs , and hence 
reverse (reverse xs) = .1 for any infinite list xs. 

As a final word of caution, observe that there do exist predicates that are not 
chain complete. For example, if P(xs) is the predicate ' xs is a partial list ' ,  
and YSo ,  YS1 ' YS2 " . .  is a sequence of partial lists whose limit is the infinite 
list ys (for example, the sequence .1,  1 : .1 ,  1 : 2 : .1 ,  . . .  whose limit is 
[1, 2, 3 ,  . . .  D ,  then P(yso) , P(YS1 ) , P(YS2 ) , ' " will all be true but P(ys) will 
be  false. For such predicates, induction can still be used to prove that the 
predicate holds for partial lists ,  but the proof will not necessarily extend to 
infinite lists .  

7.5.1 The take-lemma 

Unfortunately, the principle of induction introduced above is not always suf
ficient to establish every property of infinite lists we would like. Consider, 
for instance, the following assertion: 

iterate f x = x : map f ( iterate f x )  

Here, iterate i s  the function: 

iterate f x = x :  iterate f (f x )  

introduced in Section 7.2. Though true, the assertion cannot be  proved by 
induction (at least not obviously so) because there is no appropriate argu
ment of iterate to do the induction over. Indeed, what we would like to do 
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is establish the assertion by induction over the structure of the result of 
applying itemte, not over either of its arguments .  

Fortunately, there is  a simple fact which captures what we want and can 
be used as the basis of an alternative proof technique. It stems from the 
observation that two lists, xs and ys , whether finite, infinite or partial, are 
equal just in the case that : 

take n xs = take n ys 

for all natural numbers n. We shall refer to this fact as the take-lemma. 
In one direction the proof of the take-lemma is obvious :  if xs = ys, then 

certainly take n xs = take n ys for any number n. To justify the result in the 
reverse direction, recall the definition of take : 

take 0 xs = [ ]  
take (n  + 1) [ ] = [ ]  
take (n  + 1) ( x  : xs) = x :  take n xs 

From these equations we can derive the following facts: 

(i) xs = 1. if and only if take n xs = 1. for all positive nj 
(ii) xs = [ ]  if and only if take n xs = [ ]  for all positive nj 

(iii) xs = x' : xs' for some x' and xs' if and only if: 

take n xs = x' : take (n  - 1) xs' 

for all positive n. 

Proofs of these results are left as exercises for the reader. 
Now suppose xs and ys are two lists such that take n xs = take n ys for 

all positive n. We shall argue that xs = ys by distinguishing three cases . 

Case xs = 1..  Using fact (i) we have: 

take n ys = take n xs = 1. 

for all positive n. Using fact (i) a second time we obtain ys = 1.; 

Case xs = [ ] .  This is similar to the previous case, but uses fact (ii) twice; 

Case xs = x' : xs'. Finally, if xs is of the form x' : xs' , then: 

take n ys = x' : take (n - 1) xs' 

and so ys = x' : xs' = xs by fact (iii) .  
Hence in all three cases we have the desired conclusion that xs = ys . 
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The proof of the take-lemma may seem rather elaborate, for the result cer
tainly appears intuitively obvious. However, intuition is not always a reliable 
guide in reasoning about non-finite lists .  For example, the proposition that 
two lists xs and ys are equal just in the case that : 

xs ! n = ys ! n 

for all natural numbers n is false. As one counterexample, take xs = 1. and 
ys = [1.] .  These lists are different but indexing with any natural number 
returns 1. in all cases . 

Let us now use the lemma to prove that: 

iterate / x = x : map / ( iterate / x ) 

for all / and x .  Given the definition of iterate, an equivalent statement is 
that: 

iterate / (f x ) = map / ( iterate / x ) 
By the take-lemma, this equation will follow if we can show: 

take n ( iterate / (f x ) )  = take n (map / (iterate / x)) 

for all natural numbers n. 

Proof. The proof is by induction on n. 

Case O .  Obvious, since take 0 X8 = [ J  for any list xs. 
Case n + 1.  

take (n  + 1) ( iterate / (f x ) )  
= take (n + 1 ) (/ x : iterate / (f (f x ))) 
= / x :  take n ( iterate / (f (f x) ) )  
= / x : take n ( map / ( iterate / (f x ))) 
= take (n + 1) (/ x : map / (iterate / (f x) ) )  
= take (n + 1) (map / (x :  iterate / (f x ))) 
= take (n + 1) (map / ( iterate / x )) 

as required. 0 

( iterate. 1 ) 
( take.3) 
(hypothesis) 
( take.3) 
(map .2) 
( iterate. 1) 

We shall give one further example of the take-lemma. Consider the infinite 
list nats defined by: 

nats = 0 :  map (+1)  nats 

We shall prove nats = [0 . .  J by showing that : 

take n nats = [0 . .  n - 1] 
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for all natural numbers n. To do this, we need the useful subsidiary result 
that: 

take n ·  map ! = map ! ' take n 
for all ! and n. In other words, take n commutes with map ! .  The proof is 
left as an exercise . The induction step for our assertion is: 

take (n + 1) nats 
= take (n  + 1) (0 : map (+1) nats) 

0 :  take n (map (+1) nats) 
= 0 :  map ( + 1) ( take n nats) 
= 0 :  map (+1) [0 . .  n - 1] 
= 0 :  [1 . .  n] 
= [0 . .  n] 

as required. 

Exercises 

7.5.1 Prove that : 

(nats .1)  
( take .3) 
(map, take comm.) 
(hypothesis) 

iterate (+a) b = [(i X a) + b I i +- [0 . .  ]] 

7.5.2 Define: 
loop1 = loop1 
loop2 = loop1 : loop2 
loop3 = tl (1  : loop3) 

What are the values of loop1 , loop2 , and loopa? Give the infinite sequences 
that have these values as their limit . 

7.5.3 Prove that #xs = ..L if xs is partial or infinite. 

7.5.4 In Chapter 5 a proof was given that : 

take n xs * drop n xs = xs 

for all finite lists xs. Extend the proof to cover infinite lists xs . 

7 . S . S  Why does the proof of the second duality theorem in Chapter 5 not 
extend to infinite lists? 

7 . S .6 Prove that drop n xs is a partial list whenever xs is a partial list . From 
this result , can we conclude that drop n xs is infinite whenever xs is infinite? 

7.5.7 Suppose we define: 

jibs = 0 :  1 : [x + y I (x ,  y) +- zip (jibs , tl jibs)] 

Prove that jibs = map jib [0 . .  ] , where jib is the Fibonacci function. State 
carefully any subsidiary results you use about the relationship of take with 
zip . 
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7.6 Cyclic structures 

Data structures, like functions , may be defined recursively. As a simple 
example, consider the definition: 

We have: 

ones = 1 :  ones 

ones = 1 :  ones 
= l : l : ones 
= 1 :  1 : 1 : ones 

and so ones is bound to the infinite list [1 , 1 , 1 ,  . . .  ] .  
Recall that Section 6.2.2 discussed how expressions are represented as 

graphs inside the computer memory. The representation of ones as a graph 
is particularly interesting, as it involves a cyclic structure: 

So in this case the entire infinite list may be represented within a fixed amount 
of space! 

As a second example, consider the definition: 

more = "More " * andmore 
where andmore = "and more " * andmore 

The value of more is also an infinite list: 

? more 
More and more and more and more and more and m{interrupted} 

After more has been evaluated, it will be represented by the graph: 

'M' : '0' : 'r' : Ie' : ' , : " a' : In' : 'd' : ' 
, 

: 'm' : '0' : 'r' : Ie' : ' , : 1 
which again involves a cycle. 

We now consider three further examples of the use of cyclic structures . 

7.6.1 Forever 

Let forever be a function such that forever x is the infinite list [x , x, x, . . .  ] ,  
so  the definition of ones above i s  equivalent to: 

ones = forever 1 
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One way to define fOre'lJer is : 

forever z = z :  forever z 

187 

This definition is correct , but does not create a cyclic structure. If ones and 
forever are defined as above, then after printing the first five elements ,  ones 
will be represented by the graph: 

1 :  1 :  1 :  1 :  1 : forever 1 

which is not cyclic. If the next element of the list is printed, the subterm 
forever 1 will be replaced by 1 : forever 1 , and so the list of ones may grow 
longer without end. On the other hand, if the definition of forever is changed 
to: 

forever z = Z8 
where Z8 = z : zs 

then the definition of ones in terms of forever will produce the same cyclic 
structure as before. 

7.6.2 Iterate 

Here is a new definition of the function itemte , this time using a cyclic struc
ture: 

itemte f z = Z8 
where zs = z :  map f zs 

Consider the term itemte (2x )  1 .  The first few steps of evaluating this term 
are as follows :  

itemte (2x )  1 

=> +1 : map (2x )1 

=> 1 :  +2 : map (2x )1 

=> 1 : 2 : +4 : map (2x )1 

Notice that if f z can be computed in 0(1)  steps then the first n elements of 
itemte f z can be computed in O(n) steps. 

If we eliminate the where-clause from the above definition, we get yet 
another definition of itemte: 

itemte f z = z :  map f (itemte f z) 
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We showed in the previous section that iterate satisfies this equation. The 
new definition does not use cyclic lists, and turns out to be much less efficient 
than the previous definition. Considering again the term iterate (2x ) 1, the 
first few steps of evaluating this term are: 

iterate (2x )  1 
� 1 :  map (2x )  ( iterate (2x ) 1) 
=> 1 :  2 :  map (2x ) (map (2x )  ( iterate (2x )  1)) 
� 1 :  2 :  4 :  map (2x )  (map (2x )  (map (2x )  (iterate (2x )  1)) )  

It can be seen that it now requires O(n2) steps to compute the first n elements 
of iterate I z .  So in this example the use of cyclic structures is essential in 
achieving efficiency. 

7.6.3 The Hamming problem 

A well-known problem, due to the mathematician W.R. Hamming, is to 
write a program that produces an infinite list of numbers with the following 
properties: 

(i) The list is in ascending order, without duplicates . 

(li) The list begins with the number 1 .  
(iii) If the list contains the number z ,  then it also contains the numbers 

2 X x ,  3 X x, and 5 X x .  
(iv) The list contains no other numbers . 

Thus , the required list begins with the numbers : 

1 , 2 , 3 , 4, 5, 6, 8, 9, 10, 12, 15, 16, . . .  

The Hamming problem is important , as it is typical of a class of ques
tions known as closure problems. In general, a closure problem specifies a 
collection of initial elements and a class of generator functions. In this case, 
we are asked to find the closure of the initial element 1 under the generating 
functions (2x ) ,  (3 x ) ,  and (5x ) . The Hamming problem has a particularly 
efficient solution because the generating functions are monotonic; for exam

ple, (2x )  is monotonic because x < y implies 2x < 2y, and similarly for (3 x )  
and (5x ) .  

The key to the solution is t o  define a function merge that takes two lists 
of numbers in ascending order, and merges these into a single list of numbers 
in ascending order, containing exactly the numbers in the original lists with 
no duplications.  This function may be defined as follows :  

merge (x : xs) (y  : ys) = x :  merge xs ys , if z = y 
= x :  merge xs (y  : ys) ,  if z < y 
= y :  merge (z : zs) ys, if y < z 
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This definition is suitable only for merging infinite lists, and it is left as an 
exercise to extend it to be suitable for finite lists as well. 

Given merge it is easy to define the required list, as follows: 

hamming = 1 :  merge (map (2x )  hamming) 
( merge ( map (3 x )  hamming) 

(map (5x )  hamming)) 

Initially, hamming will be represented by the following cyclic structure: 

'1 : merge (map (2x )1 ) 
(merge (map (3x )  ) 

(map (5x )  )) 

After the first seven elements of hamming have been printed, the above struc
ture will have reduced to the following: 

1 : 2 :  3 :  4 : 5 : '6 : 8 : merge (10 : map (2x )1 ) 
(9 : me7ye (map (3x ) ) 

(10 : map (5x )  ) )  

Note that first n elements of the list hamming can be computed in O(n) 
steps. 

An obvious generalisation of the Hamming problem is to replace the num
bers 2, 3 , and 5 by arbitrary positive numbers a ,  b, and e. We then have: 

hamming' a b e  = 1 :  merge (map ( ax )  (hamming' a b e)) 
(merge (map ( b x )  (hamming' a b e)) 

(map ( e x )  (hamming' a b e))) 

This solution produces the correct answer, but does not form a cyclic struc
ture, and so requires 0 (n2 ) steps to compute the first n elements of the result 
list . It is left as an exercise to modify hamming' so that it does form a cyclic 
structure. 

Exercises 

7.6.1 Draw the (degenerate) cyclic graphs that represent loop 1 , loop2 , and 
loopS in Exercise 7.5.2. 
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7.6.2 Define dither by: 

dither = yes 
where yes 

no 
maybe 

INFINITE LISTS 

= "Yes." * no 
= "No!" * maybe 
= "Maybe?" * yes 

What will be printed if dither is typed in a session? Draw the graph of the 
cyclic structure that represents this value. 

7.6.3 Draw the four cyclic graphs that represent hamming after the first 1 ,  
2 , 3 ,  and 4 elements have been printed. 

7.6.4 Modify hamming' so that it forms a cyclic structure. 

7.6.5 We can generalise the Hamming problem by replacing the multiples 
2,3,5 with a list as of positive numbers. That is, we wish to find a list in 
ascending order that begins with 1 and such that if x is in the list and a 
is in as , then a X x is in the list. Write a program to solve the generalised 
Hamming problem. 

7.6.6 We can also generalise the Hamming problem by replacing 1 with a 
list bs of positive numbers sorted in ascending order. That is , we now wish 
to find a list in ascending order such that every b in bs is in the list , and if 
x is in the list then 2x , 3x and 5x are in the list . Write a program to solve 
this version of the Hamming problem. 

7.7 Example: the paper-rock-scissors game 

Our next example is instructive as well as entertaining. Not only does it 
introduce the idea of using infinite lists to model a sequence of interactions 
between processes, it also provides a concrete illustration of the necessity for 
formal analysis .  

The paper-rock-scissors game is a familiar one to children, though it  is  
known by different names in different places. The game is played by two 
people facing one another. Behind their backs , each player forms a hand in 
the shape of either a rock (a clenched fist) ,  a piece of paper (a flat palm), or a 
pair of scissors (two fingers extended) .  At a given instant, both players bring 
their hidden hand forward. The winner is determined by the rule 'paper 
wraps rock, rock blunts scissors, and scissors cut paper' .  Thus , if player 1 
produces a rock and player 2 produces a pair of scissors, then player 1 wins 
because rock blunts scissors . If both players produce the same object , then 
the game is a tie and neither wins . The game continues in this fashion for a 
fixed number of rounds agreed in advance. 

Our objective is to write a program to play and score the game. Suppose 
we represent a move by one of the strings "Paper" , "Rock" and "Scissors" , 
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and define a round of the game to be a pair of moves, one for each player. It 
is convenient to introduce the synonyms: 

move = =  [char] 
round == (move , move) 

(In the next chapter we shall see how moves can be denoted directly as values 
of a new type, rather than represented indirectly as lists of characters .) 

In order to score a round, we need first to define the function beats which 
expresses the relative powers of the three objects .  The definition is: 

Now we can define: 

beats "Paper" 
beats "Rock" 
beats "Scissors" 

= "Scissors" 
= "Paper" 
= "Rock" 

score (z , y) = (0, 0), if z = y 
= (1 , 0) ,  if z = beats y 
= (0, 1) ,  if y = beats z 

Each player in the game will be represented by a certain strategy. For 
instance, one simple strategy is, after the first round, always to produce 
what the opposing player showed in the previous round. This strategy will 
be called reciprocate , or recip for short . Another strategy, which we shall call 
smart , is to determine a move by counting the number of times the opponent 
has produced each of the three possible objects, and calculating the response 
appropriately. 

We shall consider the details of particular strategies, and how they can 
be represented, later on. For the moment, suppose the type strategy is given 
in some way. The function rounds will have type: 

rounds : :  (strategy, strategy) --+ [round] 

This function takes a pair of strategies and returns the infinite list of rounds 
which ensue when each player follows his or her assigned strategy. Given 
rounds we can define a function match, with type: 

match : :  num --+ ( strategy , strategy) --+ (num, num) 

which determines the result of playing a fixed number of rounds of the game. 
The definition is: 

match n = total · map score · take n . rounds 

The function total is defined by: 

total scores = (sum (map 1st scores) ,  sum (map snd scores)) 



192 INFINITE LISTS 

7.7.1  Representing strategies 

In order to complete the model of the game, we must decide on how strate
gies are to be represented, and so supply the necessary definition of rounds. 
There are at least two possible methods for representing strategies and it is 
instructive to compare them in some detail. In the first , we take: 

strategy == [move] -+ move 

Here, a strategy is a function which takes the (finite) list of moves made by 
the opponent so far and returns an appropriate reply. For example, the recip 
strategy can be programmed by: 

recip zs = "Paper" , 
= last zs, 

if zs = [ ]  
otherwise 

Here, "Paper" is an arbitrarily chosen first move, and last is the function 
which returns the last element of a non-empty list . 

The second strategy smart can be defined by the equations : 

smart zs = "Rock" , if zs = [ ] 
otherwise = choose (p, r, s) ,  

where p = count "Paper" zs 
q = count "Rock" :I:S 
r = count "Scissors" zs 

Here, "Rock" is again some arbitrarily fixed first move. The function count 
counts the number of times each object has been playedj it is defined by: 

count z zs = #[y I y +- :l:Sj X = y] 

The function choose determines a move statistically. In order to define this 
function, suppose rand is a function which takes a number n and returns a 
'random" number a, depending on n, in the range 0 � a < 1 .  We can now 
write: 

choose (p , r ,  s )  = "Scissors" , if a < p 
= "Paper" , if p � a 1\ a < p + r 
= "Rock" , if p + r � a 1\ a < p + r + s 

where a = (p + r + s) * rand(p + r + s) 

This function determines the appropriate move depending on whether a falls 
in the range 0 � a < p or p � a < p + r, or p + r � a < p + r + s .  For 
choose to be well-defined, at least one of p,  r, or s must not be zero. 

We can now define: 

update (I, g) rs 
rounds (I , g) 

= rs * [(I (map snd rs) , g  (map fst rs) )] 
= map last ( tl ( iterate ( update (I, g))  [ ] ) )  
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The function update appends a new pair of moves to the list of existing 
rounds, and rounds generates the infinite list of rounds by repeatedly apply
ing update to the initially empty list . The definition is somewhat clumsy. 
More importantly, it is not very efficient . Suppose a strategy takes time 
proportional to the length of the input to compute its result. It follows 
that update takes O(n) steps to update a game of n rounds by a new one. 
Therefore, to compute a game of N rounds requires O(N2) steps. 

An alternative representation. For comparison, let us now consider 
another way we might reasonably represent strategies . This time we take: 

strategy == [move 1 - [move 1 

In the new representation, a strategy is a function which takes the infinite 
list of moves made by the opponent and returns the infinite list of replies . 
For example, the strategy recip is now implemented by the equation 

recip ms = "Paper" : ms 

This strategy returns "Paper" the first time, and thereafter returns just the 
move made by the opponent in the previous round. Observe that this version 
of recip produces each successive output with constant delay. 

The strategy smart can be reprogrammed as follows: 

smart xs = "Rock" : map choose ( counts xs) 
counts = tl · scan (ffi) (0, 0 , 0) 

where (p , r, s) ffi "Paper" = (p + 1 , r , s )  
(p , r , s) ffi "Rock" = (p , r + 1 , s )  
(p , r ,  s) ffi "Scissors" = (p , r ,  s + 1)  

The value ( counts xs) is the list of triples representing the running counts of 
the three move values. The smart strategy is also efficient in that it produces 
each successive output with constant delay. 

With our new model of strategies we can redefine the function rounds in 
the following way: 

rounds (f , g) = zip (xs ,  ys) 
where xs = f ys 

ys = 9 xs 

Here, xs is the list of replies computed by f in response to the list ys which, 
in turn, is the list of replies made by 9 in response to xs . To ensure that 
rounds (f, g) does generate an infinite list of well-defined moves, we require 
that the pair of mutually recursive definitions :  

xs = f ys 
ys = 9 xs 



194 INFINITE LISTS 

generate infinite lists of well-defined elements. If f and 9 satisfy this con
dition, then the new definition of rounds computes the first n moves of the 
game in O( n) steps, assuming that f and 9 compute each new move with 
constant delay. Thus, the second method for modelling strategies leads to a 
more efficient program than the earlier one. 

7.7.2 Cheating 

Unfortunately, however, there is a crucial flaw with the new method: it offers 
no protection against a strategy that cheats! Consider the strategy: 

cheat xs = map beats u 

The first reply of cheat is the move guaranteed to beat the opponent 's first 
move; similarly for subsequent moves. To see that cheat cannot be prevented 
from subverting the game, consider a match in which it is played against 
recip. Suppose: 

xs = cheat ys 
ys = recip u 

These equations have solutions xs and ys which are the limits of the sequence 
of approximations XSo , Ul ,  • • .  and YSo, YS1 , " "  respectively, where Uo = 
YSo = .L and: 

Un+1 = cheat ys" 
YSn+1 = recip u" 

Now, we have: 

and so: 

and so: 

XSl = cheat .L = .L 
YSI = recip .L = "Paper" : .L 

U2 = cheat ( "Paper" : .L) 
YS2 = recip .L 

= lOS cissors" : .L 
= "Paper" : .L 

U3 = cheat ( "Paper" : .L) = "Scissors" : .L 
YS3 = recip ( "Scissors" : .L ) = "Paper" : "Scissors" : .L 

Continuing in this way, we see that the limits of these sequences are indeed 
well-defined and, moreover, cheat always triumphs.  

Can we find a way to protect against such a strategy? To answer this 
question, we need to take a closer look at what constitutes a fair strategy. 
Informally speaking, f is fair if it can determine its first move in the absence 
of any information about its opponent 's first move, its second move only on 
the basis of the opponent 's first move (at most) , and so on. (Of course, it 
is not required that f take any account of the opponent's previous moves in 
order to compute a reply.) 
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More formally, I is fair if for all sequences Xl , X2 ,  . . .  of opponent 's moves, 
there exists moves Yl . Y2 , . . .  such that : 

take 1 (f .1 ) 
take 2 (f (Xl : .1) )  
take 3 (f (Xl : X2 : .1 )) 

= [Yl] 

= [Yl . Y2] 

= [Yl , Y2 , Y3] 

and so on. In other words, we must have, for all infinite sequences of well
defined moves xs and for all n � 0 ,  that : 

take (n + 1) (f (prune n xs)) 

is a list of (n+ 1 ) well-defined moves, where prune is defined by the equations: 

prune 0 xs .1 
prune (n  + 1) (x : xs) X :  prune n xs 

The recip strategy is fair in this sense because, using the fact that : 

take n (prune n xs) = take n xs 

for all n and xs ,  we have: 

take (n  + 1) (recip (prune n xs))  = take (n + 1) ( "Paper" : prune n xs) 
= "Paper" : take n (prune n xs) 
= "Paper" : take n xs 

The last expression is a list of ( n + 1 ) well-defined moves, provided xs is an 
infinite list of well-defined moves. 

The cheating strategy, on the other hand, is not fair. Since: 

take 1 ( cheat (prune 0 xs ) ) = take 1 ( cheat .1 ) 
= take 1 .1  
= .1 

the fairness condition fails at the first step. 
Now we need some way of ensuring that only fair strategies are admitted 

to the game. We can do this by defining a function lair so that (fair I xs) 
returns an infinite list, equivalent to (f xs) ,  if I is a fair strategy, and returns a 
partial list otherwise. The function lair works by forcing I to return the first 
element of its output before it gives I the first element of its input. Similarly 
for the other elements .  One definition of lair is: 

lair f xs = ys 
where ys = I (synch ys xs) 

synch (y  : ys) (x : xs) = x :  synch ys xs, if defined y 
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Here, defined returns True if its argument is not .1, and .1 otherwise. In 
particular, we have 

synch (J.. : ys) (x : xs) = J.. 
We leave as an instructive exercise for the reader the proof that (fair f xs) 
returns an infinite list of well-defined moves if and only if f is a fair strategy. 

It follows from the above analysis that to prevent cheating we must rewrite 
the definition of rounds as follows :  

rounds (f, g) = zip (xs , ys) 

Exercises 

7.7.1 Prove that : 

where xs = fair f ys 
ys = fair 9 xs 

prune n :z:s = take n xs * .1 

7.7.2 Give fair strategies in the paper-rock-scissors game that (i) never looks 
at the opponent 's moves in calculating a reply; and (ii) looks only at every 
third move. Define a strategy which is fair for ten moves, but then cheats .  

7.7.3 Prove that if f is a fair strategy, then fair f xs = f xs. Show that if f 
is not fair, then fair f xs is a partial list . What happens to the game in such 
a case? 

7.7.4 Bearing in mind that defined is applied to strings, give a definition of 
defined. 

7.8 Interactive programs 

So far, all of our sessions with the computer have involved a uniform and 
simple pattern of interaction: the user types an expression to be evaluated at 
the keyboard, and then the value of this expression is printed on the screen. 
This style of interaction is suited for a wide range of purposes , but sometimes 
other forms of interaction are required. As a trivial example, we might wish 
that everything typed on the keyboard is 'echoed' on the screen, but with 
lower-case letters converted to upper-case. A more entertaining example 
would be a program to play the game of hangman. This section shows how 
interactive programs can be written in our functional programming notation. 

An interactive program will be represented by a function f of type: 

f : : [char] � [char] . 

When f is run interactively, the input to f will be the sequence of characters 
typed at the keyboard, and the output of f will be the sequence of characters 
typed on the computer screen. 
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For example, the program that capitalises its input may be written as 
follows :  

capitalises = map capitalise 

capitalise x = decode (code x + offset) , if 'a' � x A x � 'z '  
= x ,  ot herwise 

where offset = code 'A' - code 'a' 

The function capitalise converts a lower-case letter to upper-case and IE-aves 
all other characters unchanged, and the function capitalises applies capitalise 
to each element of a list. 

The type of capitalises is: 

capitalises : :  [char] -+ [char] 

and so it may be run as an interactive program. If we do so, then typing the 
sequence of keys: 

Hello, world! 

at the keyboard will cause the output: 

HELLO ,  WORLD! 

to appear on the computer screen. The program will be fully interactive. 
That is, as soon as 'H ' is typed on the keyboard, an 'H' appears on the 
screen, and then when 'e' is typed an 'E' appears on the screen, and so on. 

The program given above will run until the interrupt key is typed or the 
computer is turned off. One can also design an interactive program that 
terminates . For example, the program: 

capitalises' = takewhile (;f 'I ') . capitalises 

behaves in the same way as capitalises , but terminates execution when the 
'I '  character is typed. Notice that the 'I'  character will not be echoed on 
the screen. 

7.8.1 Modelling interaction 

What do interactive programs have to do with infinite lists? There is little in 
an interactive program that is infinite (except , perhaps, for the interminable 
wait when the computer is heavily loaded) . However, we shall soon see that 
there are good reasons for considering the two topics together. 

We can model interactive behaviour more precisely by considering se
quences of partial lists. The behaviour of the capitalises program described 
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above is modelled by the sequence: 

capitalises 1. = 1. 
capitalises ('H' : 1.)  = 'H' : 1. 
capitalises ('H' : "e' : 1.)  = 'H' : 'E '  : 1. 

INFINITE LISTS 

capitalises ('H' : "e' : '1 ' : 1.) = 'H' : 'E' : '1' : 1. 

This can be viewed as a history of the interactive session. When nothing 
has been typed at the keyboard, nothing has appeared on the screen. When 
an 'H' has been typed at the keyboard, an 'H' has appeared on the screen. 
When "He" has been typed at the keyboard, "HE" has appeared on the 
screen. And so on. 

Just as earlier 1. was used to denote a computation that has not yet 
completed, here 1. is used to denote input that has not yet been typed at the 
keyboard, and output that has not yet appeared on the screen. 

It was noted previously that a special case of a computation that has not 
yet completed is a computation that will never complete, that is, an infinite 
loop . Similarly, two special cases of input and output are the input that 
results when the keyboard is never touched again and the output that causes 
the screen never to be printed on again. These, too, are all denoted by 1..  

In short , exactly the same techniques used to  model infinite lists are 
suitable for modelling interactive programs, and this is why the two topics 
are treated together. 

7.8.2 Hangman 

A simplified version of the game of hangman may be played as follows .  First, 
one player enters a word. Then, the other player repeatedly guesses a letter. 
For each guess ,  the computer (which acts as mediator between the players) 
prints the word, with all of those letters not guessed so far replaced by a 
'-' . When all the letters in the word have been guessed, the process repeats. 
Thus, a typical session of hangman might begin like this: 

Enter a word: - - - - - - 

a -a- --a-
n -an--an 
t -an--an 
m -an-man 
h han-man 
g hangman 
Enter a word: 

and now it is the other player's turn to enter a word. Notice that when a 
word to be guessed is entered, it is not printed but a '-' appears on the screen 
as each letter is typed on the keyboard. 
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The following program will play hangman, when the function hangman 
is run interactively: 

hangman input 
= "Enter a word: " *  echo * "t" * game word [ ]  input' 

where 
echo 
word 
input' 

= 
= 
= 

['-' I w - word] 
before 't' input 
after 't' input 

The function game is defined by: 

game word guess (c : input) 
= [c] * "u" * reveal * "t" * rest 

where 
reveal = [dash w I w - word] 
dash w = w,  

= '-' ,  
if w in (c : guess) 
otherwise 

rest = game word ( c  : guess) input , if '-' in reveal 
= hangman input, otherwise 

The functions before and after are given by: 

before z 

after z 

= takewhile (� z) 
= tl · dropwhile (� z ) 

In the above script,  word is the word to be guessed, guess is the list of guesses 
so far, and input is the list of characters typed at the keyboard. Note that : 

before 't' "hangman tantmhg" = "hangman" 
after 't' "hangman tantmhg" = "antmhg" 

and so before and after may be used to extract the word to be guessed and 
the remaining input . 

Observe also that : 

hangman 1. = "Enter a word: " * 1. 
hangman ('h' : 1.) = "Enter a word: -" * 1. 
hangman ('h' : 'a' : 1.) = "Enter a word: --" * 1. 

and so the prompt "Enter a word: " will be printed on the screen before any 
input is typed, and each character of the word will be echoed on the screen 
with a '-' as it is typed. 
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7.8.3 Utility functions 

The process of writing interactive programs can be greatly aided by intro
ducing a few utility functions. One such utility function is read, defined as 
follows:  

read msg g input = msg * line * "t" * g line input' 
where line = before 't' input 

input' = after 't' input 

The term (read msg g) denotes an interactive program (that is, a function of 
type [char] -+ [char] ) that prints the string msg on the screen, then reads 
the next line line from the keyboard and echoes it on the screen as it is read, 
and then behaves like the interactive program g line (so g must be such that 
g line :: [char] -+ [char] ) .  

For example, if we define: 

hangman' = read "Enter a word: " h 
where h word = game word "" 

then hangman' will be identical to hangman, except that when entering the 
initial word each character will be echoed as itself (instead of each character 
being echoed as a '- ') . 

Another useful utility function is read2 , which performs two read opera
tions in sequence. It is defined as follows: 

read2 (msg1 , msg2) g = read msg1 g1 
where 
g1 line1 = read msg2 g2 

where 
g2 line2 = g ( linel , line2) 

The term read2 (msgl , msg2) g denotes an interactive program that prints 
the string msg1 , reads and echoes a line line1 from the keyboard, prints 
the string msg2 , reads and echoes a line line2 from the keyboard, and then 
behaves like the interactive program g ( linel , line2) .  

The read function supports a particular style of interaction: input occurs 
one line at a time and is always echoed. Utility functions to support other 
styles of input can also be written, and some examples are given in the 
exercises . 

It is also convenient to introduce utility routines for output and for the 
termination of an interactive session. These may be defined as follows : 

write msg g input = msg * g input 
end input "" 

The term write msg g denotes an interactive program that prints the string 
msg and then behaves like the interactive program g, and the term end 
denotes the interactive program that terminates an interactive session. 
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It is easy to prove the following identities : 

write (msgl * msg2) g = write msgl (write msg2 g) 
read msg 9 = write msg (read "" g) 
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That is, writing the concatenation of two messages is equivalent to writing 
the first message followed by writing the second, and reading with a given 
message is equivalent to writing the message and then reading with an empty 
message. 

As a trivial example, the infuriating program: 

guess 
= read "Guess a word: " g 

where 
g word = write "Right ! Goodbye.t" end, if word = "sheep" 

= read "Wrong! Guess again: " g ,  otherwise 

forces the user to repeatedly guess a secret word (in this case, "sheep" ) and 
terminates when the word has been correctly guessed. 

Utility functions are important because they allow interactive programs 
to be written at a higher level of abstraction. Notice that the guess program 
does not refer directly to the list of characters from the keyboard or the 
list of characters to the screen. All of the details of representing interactive 
programs as functions of type [char] --4 [char] have been hidden inside the 
implementation of the utility functions, and the users of such functions need 
not be concerned with these details . 

7.8.4 Table lookup 

This section presents a simple table lookup program as a further example of 
interaction and the use of utility functions . 

A table associates keys with values, where keys and values are both 
strings. We will need three operations on tables: 

(i) newtable is a new table with no entries j 

(ii) ( enter k v t) is identical to table t except the key k has value V j  
(iii) ( lookup t k )  i s  the value in  table t associated with key k .  

There are many possible ways to  implement tables . For example, we could 
choose to represent tables as lists of (key,value) pairs, and implement the 
operations as follows : 

newtable 
enter k v t 
lookup t k 

[ ] 
( k , v) : t 

= hd vs , if vs f; [ ]  
= "No entry" , otherwise 

where vs = [v' I (k' , v') � t j k' = k] 
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The following interactive program manipulates tables using only these three 
operations, so any other implementation of tables may easily be substituted 
for the above. 

A simple interactive program for maintaining a table might behave as 
follows . First, the program requests a command, which must be either "en
ter" or "lookup" or "end" . If the command is "enter" , then a new key and 
value are requested and entered into the table. If the command is "lookup" , 
then a key is request and its associated value in the table is printed. If the 
command is "end" , then a suitable message is printed and the interactive 
session terminates. 

The following program has the behaviour described above: 

table t = read "Command: " tcommand 
where 
tcommand "enter" 
tcommand "lookup" 
tcommand "end" 

tenter (k ,  '11) 
tlookup k 

read2 ( "Key: " ,  "Value: " ) tenter 
read "Key: " tlookup 

= write "Exit program t" end 

= write "t t" ( table ( enter k '11 t))  
= write ( lookup t k * "tt") ( table t )  

If table newtable is run interactively, then one might have the following 
session: 

Command: lookup 
Key: exempli gratia 
No entry 

Command: enter 
Key: exempli gratia 
Value: For the sake of example 

Command: enter 
Key: id est 
Value: That is to say 

Command: lookup 
Key: exempli gratia 
For the sake of example 

Command: end 
Exi t program 

For the program given here, the entries in the table are lost when the 
program exits . However, most functional languages also provide an interface 
to the file system of the computer, and this would allow the initial table to 
be read from a file and the final table to be stored in a file. The details of 
how this is done will not be discussed here. 
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This concludes a brief introduction to writing interactive programs in a func
tional notation. It is often supposed that functional programming languages 
are not suitable for expressing interactive programs, but it is hoped that 
the examples given here show that it is perfectly feasible to write interactive 
programs for a wide range of applications .  

Exercises 

7.8.1 Modify hangman to display a running total of the number of right and 
wrong guesses in a game. 

7.8.2 What are the types of the utility functions read, read2 , write , and 
end? (Hint : The types will be more meaningful if one writes interactive for 
the type [char] -+ [char] .) 

7.8.3 Write the utility function readS, which is like read2 except it prompts 
for and reads three values .  

7.8.4 Using showint and getint from Exercises 7.2.3 and 7.2 .4, write utility 
functions readint and writeint to use in interactive programs that deal with 
integers . 

7.8.5 When running the interactive program table , what happens if the com
mand is not "enter" , "lookup" ,  or "end"? Is this behaviour acceptable? 
Modify table to be more robust . 

7.8.6 The backspace character '+ ' when typed at the keyboard indicates 
that the previously typed character should be deleted, and when printed on 
the screen causes the cursor to be moved back one position. Write a utility 
function readedit that is similar to read except that '+ ' can be used to edit 
the input. For example, typing "goop+d" followed by a newline should cause 
the string "good" to be entered. (For echoing, note that a character already 
printed on the screen can be removed by printing "+u+" j this backs over the 
character, writes a space in its place, and then moves the cursor back over 
the space.) 
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New Types 

So far we have seen three basic types, num, bool and char, and three ways 
of combining them to form new types . To recap , we can make use of (i) the 
function space operator -+ to form the type of functions from one given type 
to another; (ii) the tupling operator (a, . . .  , f3) to form tuples of types; and 
(iii) the list construction operator [a] to form lists of values of a given type. 

As well as using these three operators, we can also construct new types 
directly. How this is done is the subject of the present chapter. We shall 
describe a simple mechanism for introducing new types of values, illustrate 
how the mechanism is used in practice, and describe a little of its theoretical 
foundations. 

8.1  Enumerated types 

One simple way to define a new type is by explicit enumeration of its values. 
For example , suppose we are interested in a problem which deals with the 
days of the week. We can introduce a new type day by writing: 

day : : = Sun I Mon I The I Wed I Thu I Fri I Sat 

This is an example of a type definition. Notice the new sign : : =  which serves to 
distinguish a type definition from a synonym declaration or a value definition. 
Notice also the vertical bars which separate what are called the alternatives 
of the type. The effect of the definition is to bind the name day to a new type 
which consists of eight distinct values, seven of which are represented by the 
new constants Sun, Mon, . . .  , Sat , and the eigthth by the ubiquitous ..L which 
is assumed to be a value of every type. The seven new constants are called the 
constructors of the type day. By convention, we shall distinguish constructor 
names from other kinds by beginning them with a capital letter. Thus , if 
an identifier begins with a capital letter, then it denotes a constructor; if it 
begins with a small letter, then it is a variable, defined value, or type name. 

Here are some simple examples of the use of the type day. Firstly, values 
of type day can be printed and compared: 
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? Mon 
Mon 

? Mon = Mon 
7rue 

? Mon = JiH 
False 
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However, a request to evaluate an expression such as Mon = "Moti' would 
cause the computer to signal a type error: the left-hand value has type day, 
while the right-hand value has type [char] . 

The values of an enumerated type are ordered by the position at which 
they appear in the enumeration. Hence we have: 

? Mon < JiH 
7rue 

? Sat � Sun 
False 

Like any other kind of value, the constructors of type day can appear in 
lists ,  tuples and function definitions. For example, we can define: 

workday . .  day -+ bool 
workday d = (Mon � d) A (d  � JiH) 

weekend 
weekend d 

day -+ bool 
= (d = Sat) V (d  = Sun) 

It is also possible to use the new constructors as patterns in definitions . 
For example, the function dayval which converts days to numbers can be 
defined by the seven equations: 

dayval Sun = 0 
dayval Mon = 1 
dayval The = 2 

dayval Wed = 3 
dayval Thu = 4 
dayval JiH 
dayval Sat 

An alternative definition of dayval is : 

= 5 
= 6 

dayval d = hd [k I (k ,  z ) 4- zip ( [0 . .  ] ,  days) j z = d] 
where days = [Sun, Mon, The, Wed, Thu, JiH, Sat] 

The inverse function valday can be defined in a similar fashion. We can use 
dayval, together with valday , to define a function dayafter which returns the 
day after a given day: 

dayafter d = valday « dayval d + 1) mod 7) 
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Further examples . Recall from the previous chapter that we defined a 
move in the paper-rock-scissors game as being one of the strings : "Paper" , 
"Rock" or "Scissors" . Using an enumerated type definition, the type move 
can be defined directly by: 

move : := Paper I Rock I Scissors 

This introduces three new constructors for the values of type move. The 
function beats of the previous chapter can now be defined by the equations: 

beats Paper = Scissors 
beats Rock = Paper 
beats Scissors = Rock 

Next , recall that in the description of the turtle-graphics program of 
Chapter 4 we used numerical or boolean codings for various quantities , such 
as directions and pen positions. With type enumerations we can write: 

direction : := North I East I South I West 
pen . .  - Up I Down 

These definitions are clearer than the coded versions because the names of 
the values are closely related to their roles. More importantly, they give an 
additional measure of security against misuse.  For example, since a direction 
is no longer a number, the logical mistake of trying to add two directions 
numerically will be caught at the type-analysis stage of evaluation. 

Given the mechanism of enumerated types, it should be clear that the 
type bool need not be considered as primitive. We simply define: 

bool : := False I 7hte 

Since False precedes 7hte in the enumeration, it follows that False < True. 
Similar remarks apply to the type char . We can define char as an enu

merated type: 

char : := AsciiO I Asciil I . . .  I Ascii127 

consisting of 128 named constants .  The only distinction between this def
inition of char and the built-in one is that , in the latter case, the naming 
and printing convention for constructors is non-standard (the same is true 
for numbers and lists) . 

8.2 Composite types 

As well as defining a type by listing the names of its values, we can also define 
types whose values depend on those of other types. For example: 

tag : := Tagn num I Tagb 0001 
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This defines a type tag whose values are denoted by expressions of the form 
( Tagn n) ,  where n is an arbitrary number, and ( Tagb b) ,  where b is an 
arbitrary boolean value. There are also three additional values of tag : the 
value 1.. , which is an element of every type, and the values ( Tagn 1..) and 
( Tagb 1..) .  We shall consider these further below. 

The names Tagn and Tagb introduce two constructors for building values 
of type tag. Each constructor denotes a function. The types of these functions 
are: 

Tagn : :  num --+ tag 
Tagb :: bool --+ tag 

There are two key properties that distinguish constructors such as Tagn 
and Tagb from other functions. First of all, an expression such as ( Tagn 3) 
cannot be further simplified and is therefore a canonical expression. In other 
words, there are no definitions associated with constructor functions .  Instead, 
constructors are regarded as primitive conversion functions whose role is just 
to change values of one type into another. In the present example, Tagn and 
Tagb take numbers and booleans and turn them into values of type tag . 

The second property which makes Tagn and Tagb different from ordinary 
functions is that expressions of the form ( Tagn n) and ( Tagb b) can appear as 
patterns on the left-hand side of definitions .  For example, we can recover the 
elements of the component types by defining the following 'selector' functions :  

numval . . tag --+ num 
numval ( Tagn n) = n 

boolval . .  tag --+ bool 
boolval ( Tagb b) = b 

U sing pattern matching we can also define functions for discriminating be
tween the alternatives of the type. For example, consider the predicate 
isNum, defined by: 

isNum ( Tagn n) = True 
isNum ( Tagb b) = False 

This function has the property that: 

isNum 1.. = 1.. 
isNum ( Tagn 1..) = 71rue 
isNum ( Tagb 1.) = False 

It follows that the three values 1.. , Tagn 1.. , and Tagb 1.. are all distinct , as we 
claimed earlier. The predicate isBool can be defined in a similar manner. 

The values of tag are also ordered under the generic relation < .  We have: 

Tagn n < Tagn m = n < m 
Tagn n < Tagb b = 71rue 
Tagb b < Tagn n = False 
Tagb b < Tagb c = b < c 
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The second and third equations follow from the relative position of the alter
natives in the definition of tag . 

Further examples. The right-hand side of the definition of tag contains 
two alternatives and involves two distinct component types, num and bool. 
In general, a type definition can contain one or more alternatives and zero 
or more component types . For example, the type: 

temp : : = Celsius num I Fahrenheit num I Kelvin num 

contains three alternatives yet only one component type, namely num. The 
type temp might be used to provide for multiple representations of temper
atures . However, it is a fundamental property of all data types that distinct 
canonical expressions represent distinct values of the type, so we have: 

? Celsius 0 = Fahrenheit 32 
False 

In order to compare temperatures in the expected way, we have to define an 
explicit equality test : 

eqtemp : :  temp -+ temp -+ bool 

and use eqtemp instead of the built-in test (=) .  The appropriate definition 
of eqtemp is left as an exercise. 

Another method for describing essentially the same information about 
temperatures is to define: 

temp == ( tag , num) 
tag . . - Celsius I Fahrenheit I Kelvin 

Here, temp is not a new type but merely a synonym for a pair of values . Yet 
a third way is to write 

temp 
tag 

Temp tag num 
Celsius I Fahrenheit I Kelvin 

Here, temp is a new type. Note that there is only one alternative in the 
definition of temp . Such types are called 'non-union' types in contrast to 
'union' types which, by definition, contain at least two alternatives. 

Here is another example of a type containing only one alternative: 

file : := File [record] 

Values of type file take the form (File rs) , where rs is a list of records .  Since 
a file is not a list , we have to provide explicit functions for processing files . 
For example, to delete a record from a file, we can define a function: 

delete . . record -+ file -+ file 
delete r (File rs) = File (rs -- [r] ) 
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Other useful file processing functions might include: 

empty .. file 
insert : :  record -+ file -+ file 
merge :: file -+ file -+ file 
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One advantage of defining file as a special type, equipped with its own special 
set of operations, is an additional measure of security. With the synonym 
definition: 

file == [record] 

every operation on lists is automatically valid for files and no protection 
against misuse is possible. 

8.2.1  Polymorphic types 

Type definitions can also be parameterised by type variables .  For example, 
we can define: 

file a : := File [a] 

The previous type file now corresponds to the type (file record).  
A revealing example of a polymorphic type definition is : 

pair a [j : := Pair a [j 

For example, we have: 

Pair 3 7Tue .. pair num bool 
Pair [3] 0 . .  pair [num]num 

Pair (Pair 1 2) 3 .. pair (pair num num) num 

Values of (pair a [j) can be put into one-to-one correspondence with values 
of (a, [j). It follows that (a,  [j) need not be given as a primitive type. In just 
the same way, we can define versions of the tuple-type (al ' a2 , . . .  , an ) for 
any fixed n. 

8.2.2 General form 

We have now introduced all the essential features of type definitions .  To 
summarise, a type ( t  al a2 . . .  am ) is defined by an equation: 

where m � 0, n � 1 and let � 0 for 1 � i � n. Furthermore, Cl , . . .  , Cn are 
distinct constructor names, and each t;j is a type expression. 

The values of type t consist of .1 and all expressions of the form 
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where 1 :5 i :5 n and Xij is an element of lij for 1 :5 j :5 k. . Thus, each 
possible way of building an expression in terms of constructors is valid and 
denotes a value of t .  Furthermore, two values x and Y of t are equal just in 
the cases that either: 

(i) x = Y = .lj  or 

(ii) x = C. Xi1 • • •  Xik, and y = C. Yil • • •  Yikp where 1 :5 i :5 n and Xij = Yij 
for 1 :5 j :5 ki . 

Thus, every value is represented by a unique expression in terms of construc
tors . 

Exercises 

8.2.1 Give a one-line definition of the function valday described in Section 
8 .1 .  

8.2 .2 Suggest a way of representing the type (a, (3) by lists of length two. 
Generalise for arbitrary tuple-types. 

8.2 .3 Suppose a company keeps records of its personnel. Each record con
tains information about the person's name, sex, date of birth and date of 
appointment. Define a function that takes the current date and the file of 
personnel records and returns a list of names of those people who have served 
the company for twenty years or more. Supposing that employees hired be
fore 1980 retire in the year in which they reach sixty-five, while employees 
hired after 1980 retire at sixty, define a function that calculates for a named 
employee the number of years before they retire . How would you organise 
the definitions so that they do not depend on the details of how personnel 
records are represented? 

8.2 .4 Suppose records have numeric keys. Define a function for merging two 
files whose records are in increasing order of key value. 

8.2 .5 Define functions for (i) testing the equality of two temperatures j and 
(ii) testing whether one temperature is colder than another. 

8.3  Recursive types 

Type definitions can also be recursivej in fact, much of the power of the type 
mechanism comes from the ability to define recursive types. To see what is 
involved, we consider three examples: natural numbers , lists and arithmetic 
expressions . 
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8.3.1 Natural numbers 

The type nat of natural numbers is introduced by the definition: 

nat : := Zero I Succ nat 

This definition says that Zero is a value of nat, and that (Succ n) is a value 
of nat whenever n is. For example, each of: 

Zero 
Succ Zero 

Succ (Succ Zero) 

are values of nat. In nat , the number 7 would be represented by the value: 

Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))  

In fact , every natural number is represented by a unique value of nat . On 
the other hand, not every value of nat represents a natural number. To start 
with, nat contains the value J.. which does not correspond to a well-defined 
number. As we shall see, there are also other values in nat which do not 
represent numbers. 

Many common arithmetic functions can be defined in terms of nat rather 
than num. For example, the operation ffi over nat, which corresponds to + 
over the natural numbers, is defined by: 

n ffi Zero = n 
n ffi (Succ m) = Succ (n ffi m ) 

The number of reduction steps required to evaluate (n  ffi m) is proportional 
to the size of m , where: 

size Zero = 0 
size (Succ n) = 1 + size n. 

To give one more, rather well-worn, example, consider: 

fibnat Zero = Zero 
fibnat (Succ Zero) = Succ Zero 
fibnat (Succ (Succ n)) = fibnat (Succ n) ffi fibnat n 

This is, of course, the definition of the Fibonacci function expressed . as a 
function over nat . '. 

Notice the forms of the patterns involved in these two definitions. Each 
of the patterns Zero and (Succ m) is disjoint from the other and together 
they exhaust all possible forms for values of nat. The same holds true for the 
set of patterns Zero, (Succ Zero) and (Succ (Succ n)). The correspondence 
between nat and the natural numbers of num explains the restrictions on the 
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forms of pattern matching permitted with num. The pattern (n  + 1) ,  of type 
num, corresponds to the pattern (Succ n) of type nat and so n itself must 
match a natural number. 

As with all type definitions, the ordering < on nat is determined by the 
relative positions of the constructors in the declaration. Since Zero precedes 
Succ we have: 

Zero < Zero 
Zero < Succ n 
Succ m < Zero 

Succ m < Succ n 

= 
= 
= 
= 

False 
True 
False 
m < n  

This ordering corresponds to the normal interpretation of < on natural num
bers. 

Now let us return to the point about there being 'extra' values in nat. 
The values: 

1., Succ 1., Succ (Succ 1.) , . . .  

are all different and each is an element of nat . To see that they are different , 
consider the relation � defined by: 

� 
o � (Succ n) 
(k  + 1) � (Succ n) 

= 
num -t nat -t bool 
True 

= k � n  

Informally, (k  � n) takes the value True if the natural number k is less than 
the number represented by the element n of nat, and 1. otherwise. Since: 

O � 1.  1. 
o � (Succ 1.) = True 

we have Succ 1. # 1.. In other words, Succ is not a strict function. More 
generally, we have for m < n that : 

m � (Succm 1.) = 1. 
m � (Succn 1.) True 

where fn means f iterated n times , and so Succm 1. # Succn 1. .  
There i s  also one further value of nat , namely the 'infinite' number: 

Succ (Succ (Succ . . .  ) )  

If we define: 
inf = Succ inf 

then inf denotes this value of nat . It is left as an exercise to show that inf 
is distinct from any other given element of nat . 

To summarise what we have learnt about nat , we can divide the values of 
nat into three classes : (i) the finite numbers which correspond to well-defined 
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natural numbers; (ii) the partial numbers, .1., (Succ .1.) ,  and so on; and (iii) a 
single infinite number. This last value represents ,  in a sense that can be made 
quite precise, the unique 'limit ' of the partial numbers. We have encountered 
a similar classification for the case of lists in the previous chapter and we 
shall see that it holds true of all recUrsive types. There will be the finite 
elements of the type; the partial elements ,  and the infinite elements .  As in 
the case of lists, there will in general be more than one infinite element , but 
each such value will be the limit of the sequence of partial elements which 
approximate it . 

Structural induction. In order to reason about the properties of elements 
of a recursive type, we can appeal to the principle of structural induction. 
The principle of induction for nat is as follows. In order to show that a 
property P(n) holds for each finite element n of nat , it is only sufficient to 
show that : 

Case Zero. That P(O) holds; 

Case (Succ n) .  That if P(n) holds, then P(Succ n) holds also. 

We have seen many examples of the corresponding induction principle 
for 'ordinary' natural numbers in previous chapters, so we shall not give any 
new ones here. The induction method can be justified by the same kind of 
reasoning as was presented in Chapter 5 .  One important point to absorb is 
that the method only suffices to show that property P holds for every finite 
number. H, somewhat perversely, we want to show that it also holds for 
every partial number, then we have to prove more, namely that P(.1.) holds 
as well. However, there are very few properties that hold for all finite and 
partial numbers. In a sense, the partial numbers are irrelevant members of 
nat since they contribute little that is essential to the structure. 

The integers. Having dealt with the natural numbers , let us briefly see 
how to model the positive and negative integers . It is instructive to consider 
first an approach that does not give quite what is wanted. Suppose we define 
the type: 

int : := Zero I Succ int I Pred int 

The intention here is that the number 1 is represented by Succ Zero, the 
number - 2 is represented by Pred (Pred Zero), and so on. Unfortunately, int 
contains many more 'integers ' than intended. For example: 

? Succ (Pred Zero) = Pred (Succ Zero ) 
False 

and so Succ (Pred Zero) is distinct from Pred (Succ Zero) .  
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Although it is possible to use the above definition of int as a basis for 
modelling the positive and negative integers, a better method is to base the 
definition of int on nat and define: 

int : := Pos nat I Neg nat 

Every non-zero integer can now be represented uniquely as a member of int o 
The number 0 has two representations, (Pos Zero) and (Neg Zero) . It is 
left as an exercise to give a definition of int in which 0 is also represented 
uniquely. 

8.3.2 Lists as a recursive type 

Lists can also be introduced by a recursive type definition: 

list a : : = Nil I Cons a ( list a) 

This definition says that Nil is a value of ( list a) , and ( Cons x xs) is a value of 
( list a) whenever x is a value of a and xs is a value of ( list a) . For example: 

.1 
Nil 

Cons .1 Nil 
Cons 1 .1  

Cons 1 ( Cons 2 Nil) 

all denote distinct values of type ( list num) . 
Values of type ( list a) can be put into one-to-one correspondence with 

values of type [a] . It follows that lists need not be provided as a primitive 
type. It also follows that the properties of ( list a) are just the same as have 
already been described for ordinary lists in previous chapters . For example, 
there are values of ( list a) which represent partial and infinite lists .  Consider 
the sequence of expressions: 

.1 
Cons 1 .1  

Cons 1 ( Cons 2 .1) 
Cons 1 ( Cons 2 ( Cons 3 .1))  

Each term in the above sequence denotes a different value of ( list num) . 
Moreover, each term is obtained from its predecessor by replacing .1 by an 
expression of the form (Cons n .1) .  Each term is therefore 'more defined' 
than its predecessor, and is an approximation to the infinite list : 

Cons 1 ( Cons 2 ( Cons 3 . . .  ))  
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The type list num contains an infinite number of infinite lists; nevertheless, 
each is the limit of the sequence of its partial approximations. 

Structural induction. The principle of structural induction for type 
(list a) is as follows .  In order to show that a property P( xs) holds for all 
finite elements xs of type ( list a) it is necessary to show that :  

Case Nil. That P(  Nil) holds; 

Case ( Cons x xs) .  That if P( xs) holds, then P( Cons x xs) also holds for all 
x of type a .  

We have already seen many examples oft he corresponding principle for ordi
nary lists ,  so we shall give no new ones here. In order to show that P holds 
for partial lists as well, we have to add an extra case and show that 

Case 1- .  That P( 1-)  holds. 

Provided P is chain-complete, proof of these three cases is sufficient to show 
that P holds for all finite, partial and infinite lists .  

8 .3.3 Arithmetic expressions as a recursive type 

Finally, we show how to model the syntactic structure of arithmetic expres
sions by a recursive type. This type is different from previous examples 
in that it is non-linear. Non-linear types are also called trees and will be 
discussed further in the following chapter. 

For present purposes, we assume that an arithmetic expression is built 
out of numbers and the four operations +, - , X and / .  The structure of 
an arithmetic expression is revealed by the following description: if e is an 
arithmetic expression, then either: 

(i) e is a number; or 

(ii) e is an expression of the form et EEl e2 , where el and e2 are arithmetic 
expressions, and EEl is one of +,  - , X or f .  

This recursive description can be translated directly into a type definition: 

aexp 
aop 

Num num I Exp aexp aop aexp 
Add I Sub I Mul I Div 

The type aexp has two constructors, Num and Exp, corresponding to the 
two clauses of the above description. The type aexp is non-linear because 
aexp appears in two places in the second alternative of the definition. The 
enumerated type aop consists of four constructors, one for each arithmetic 
operation. 
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Figure 8.1 An arithmetic expression. 

Here are some simple examples of elements of aexp. The expression (3+4) 
is represented in aexp by the value: 

Exp (Num 3) Add (Num 4) 

Similarly, the expression 3 + 4 X 5 is represented by the value: 

Exp (Num 3) Add (Exp (Num 4) Mul (Num 5)) 

The structure of this expression is pictured as a tree in Figure 8.1 .  
We can convert values of type aexp to numbers by means of an evaluation 

function eval defined as follows: 

eval 
eval (Num n) 

aexp -+ num 
= n 

eval (Exp e1 op e2) = apply op ( eval el ) ( eval e2 ) 

The subsidiary function apply is defined by cases : 

apply Add 
apply Sub 
apply Mul 
apply Div 

= 
= 
= 
= 

(+ ) 
(� ) 
( x )  
(/) 

Each operator in aop is therefore mapped directly to the associated arithmetic 
operator. Thus, to evaluate an expression that is not a number, we evaluate 
its two sub expressions and apply the associated operator. 

For the purposes of comparison, here are two other possible ways of rep
resenting arithmetic expressions as a recursive type. First, consider: 

aexp1 Num num I Add aexp1 aexp1 I Sub aexp1 aexp1 
I Mul aexp1 aexp1 I Div aexp1 aexp1 
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In this version, the arithmetic operators have been identified as individual 
constructors of ae:r:pl . 

Second, consider: 

aezp2 : := Num num I Ezp aexp2 aop aezp2 
aop == (num -+ num -+ num) 

In this version of aexp,  the arithmetic operators appear directly as functions. 
For example, (3 + 4) is represented as the element : 

Ezp (Num 3) (+) (Num 4) 

of aezp2 and the evaluation function eval2 is defined by: 

eval2 (Num n) = n 
eval2 (Ezp el op e2) = op (eval2 el ) ( eval2 e2) 

Of the three versions of aezp, the first is arguably the simplest . To empha
sise this point , consider the problem of determining whether an arithmetic 
expression is a sum, i .e. contains only addition operations. Given the first 
definition of aezp, we can write: 

isasum e = and fop = Add l op +- ops e] 

ops (Num n) = [ ]  
ops (Ezp el op e2) = lop] * ops el * ops e2 

Given the second definition of aezp we have to write something like: 

isasum (Num n) = True 
isasum (Add el e2 ) = isasum el A isasum e2 
isasum (Sub el . e2 ) = False 
isasum (Mu.lel e2 ) = False 
isasu.m (Div el e2 ) = False 

The second definition involves more equations since there are more construc
tors of the type. 

Finally, given the third definition of aezp, the problem of defining isasu.m 
cannot be solved. We cannot compare functions, so there is no way we can 
determine whether an operator of aezp denotes addition. 

Structural induction. Finally, we look at the principle of structural 
induction as applied to aezp. This says that in order to prove that a property 
PC e) holds for every finite expression e it is sufficient to show that : 

Case (Nu.m n) . That P{Num n) holds for every nj 
Case (Ezp el op e2 ) .  That if P( el ) and P( e2 ) hold, then P( Ezp el op e2) 
also holds for every operation op . 



218 NEW TYPES 

We shall give two examples to illustrate this particular form of structural 
induction. For the first, define numcount and opcount by: 

numcount (Num n) = 1 
numcount (Exp e1 op e2 ) = numcount e1 + numcount e2 

opcount (Num n) = 0 
opcount (Exp e1 op e2 ) = 1 + opcount e1 + opcount e2 

We show that:  
numcount e = 1 + opcount e 

for all finite expressions e . 

Proof. The proof is by induction on e . 

Case (Num n). We have: 

numcount (Num n) = 1 
= 1 + 0 
= 1 + opcount (Num n) 

(numcount .l) 
(arithmetic) 
(opcount .l ) 

as required. 

Case (Exp e1 op e2 ) .  We have: 

numcount (Exp e1 op e2) 
= numcount e1 + numcount e2 
= 1 + opcount e1 + 1 + opcount e2 
= 1 + (1 + opcount e1 + opcount e2 ) 
= 1 + opcount (Exp e1 op e2) 

as required. 0 

(numcount .2 ) 
(hypothesis) 
(arithmetic ) 
( opcount .2) 

The second example of structural induction concerns the proof of correctness 
of a simple compiler for arithmetic expressions. Imagine a simple computer 
for evaluating arithmetic expressions. This computer has a 'stack' and can 
execute 'instructions' which change the value of the stack. The class of 
possible instructions is defined by the type declaration: 

instr : : =  Load num I Apply aop 

A stack value is just a list of numbers, so we define: 

stack == [num] 

The effect of executing an instruction in instr is defined by: 

execute 
execute (Load x) xs 

. .  instr -+ stack -+ stack 
= x :  xs 

execute (Apply op) (x1 : x2 : xs) = apply op x2 x1 : xs 
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In words , (Load x)  inserts x as a new element at the front of the stack, 
and (Apply op) applies the arithmetic operation op to the second and first 
numbers of the stack, leaving the result on the stack. 

A sequence of instructions is executed by the function run defined by: 

run .. [instr] -+ stack -+ stack 
run [ ]  xs = xs 
run ( in : ins) xs = run ins ( execute in xs) 

An alternative definition of run can be based on foldl (see Exercise 8.3 .7. )  
An expression can be translated (or compiled) into a list of instructions 

by the function compile, defined by: 

compile .. aexp -+ [instr] 
compile (Num n) = [Load n] 
compile (Exp el op e2 ) = compile el * compile e2 * [Apply op] 

We shall now prove the following assertion: 

run ( compile e) xs = eval e : xs 

for all finite expressions e and stores xs . The proof is by structural induction 
over aexp . 

Case (Num n). We have: 

run ( compile (Num n)) xs = run [Load n] xs 

as required. 

run [ ]  ( execute (Load n) xs) 
= execute (Load n) xs 

n :  xs 
eval (Num n) : xs 

( compile. 1) 
( run.2) 
(run.1 )  
( execute. 1 ) 
( eval .1) 

Case (Exp el op e2 ) .  To establish this case, we need a subsidiary lemma 
about run. The lemma says that : 

run ( insl * ins2) xs = run ins2 (run insl xs) 

for all insl , ins2 , and stores xs . The proof is left as an exercise. 
Now we have: 

run ( compile (Exp el op e2))  xs) 
= run (compile el * compile e2 * [Apply op] )  xs 
= run [Apply op] (run ( compile e2 ) ( run ( compile e 1 )  xs)) 
= run [Apply op] (run ( compile e2 ) ( eval el : xs)) 
= run [Apply op] ( eval e2 : eval el : xs) 
= run [ ]  ( execute (Apply op) ( eval e2 : eval el : xs)) 

execute (Apply op) (eval e2 : eval el : xs ) 
= apply op ( eval el ) ( eval e2 ) : xs 
= eval (Exp e1 op e2 ) : xs 

as required. 0 

( compile.2) 
(lemma) 
(hyp.) 
(hyp.) 
( run.2) 
(run.1)  
( execute.2) 
( eval .2) 
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Exercises 

8.3.1 Suppose inf = Succ info Show that inf is distinct from any other 
element of nat. 

8.3.2 Define multiplication and exponentiation as operations on nat . 

8.3.3 Devise a representation of integers by a type int in which each integer 
is represented uniquely. 

8.3.4 Devise a function unparse :: aexp � [char] that prints an arithmetic 
expression; for example: 

? un parse (Exp (Num 3) Add (num 4)) 
(3+4) 

As a more difficult exercise, define a function parse which takes a string 
describing a fully parenthesised arithmetic expression and produces its rep
resentation as an element of aexp. 

8.3.5 Consider, by analogy with the function fold on lists, the function 
foldexp which has type: 

foldexp : :  (num � 0:) � (0: � aop � 0: � 0: ) � aexp � 0: 

and is defined by the equations: 

foldexp f 9 (Num x)  = f x 
foldexp f 9 (Exp e1 op e2) = 9 (Joldexp f 9 e1 ) op (Joldexp f 9 e2 ) 

Using foldexp define the functions: 

eval .. aexp � num 
size .. aexp � num 

un parse . .  aexp � [char] 

8.3.6 The function un parse produces the conventional form of writing arith
metic expressions in which binary operators appear between their arguments .  
We can also write expressions with operators coming before or after their ar
guments .  For example; the expression 3 + 4 X 5 can be written as : 

+3 x 4 5 (preorder listing) 
3 4 5 X + (postorder listing) 

Define functions preorder, and postorder , each having the type aexp � [val] , 
where: 

val : : =  Nval num I Oval aop 
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8.3. T Define the function run using foldl rather than an explicit recursion. 
Using the law 

foldl (Ee) a (zs * ys) = foldl (Ee) (foldl (Ee) a :l:8) ys 

deduce that 

run ( ins1 * ins2) zs = run ins2 (run ins1 :1:8) 

for all sequences of instructions ins1 and ins2 . 

8.3.8 Explain why the proof of correctness of the arithmetic expression com
piler does not extend to infinite expressions. 

8.3.9 Modify the definition of aezp to handle unary minus. Give the modified 
eval function. 

8.3.10 Modify the definition of aezp to include numeric variables. By def
inition, an environment is a function that associates each variable with a 
numeric value. Define a function eval which takes an environment and an 
element of aezp and returns its value. How would you extend the definition 
of aezp and represent environments so that expressions of the form ' e1 where 
z = e2 ' can be included? 

8.3.11 Consider a language of propositional expressions based on the con
nectives V ,  A and ..., and variables pO , p1 , . . . . Design a representation pezp 
for propositional expressions and define a function that returns a list of the 
distinct variables appearing in an expression. Define a function that deter
mines whether an expression is a tautology. (Hint: Test an expression under 
all assignments of truth-values to variables . ) 

8.4 Abstract types 

When we use the mechanism of type definitions to introduce a new type, we 
are in effect naming its values. With the exception of functions, each value 
of a type is described by a unique expression in terms of constructors . Using 
definition by pattern matching as a basis, these expressions can be generated, 
modified and inspected in various ways. It follows that there is no need to 
name the operations associated with the type. Types in which the values are 
prescribed, but the operations are not , are called 'concrete' types . 

The situation is just the reverse with so-called 'abstract' types. An ab
stract type is defined not by naming its values , but by naming its operations . 
How values are represented is therefore less important than what operations 
are provided for manipulating them. Of course, the meaning of each oper
ation has to be described. One approach, called algebraic specification, is 
to state the relationships between the operations as a set of algebraic laws . 
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Examples of this approach are given below. Another method is to describe 
each operation in terms of the most abstract representation (or model) pos
sible. This model can involve general mathematical structures such as sets 
and functions . 

In order to implement an abstract type, the programmer has to provide a 
representation of its values , define the operations of the type in terms of this 
representation, and show that the implemented operations satisfy the pre
scribed relationships. Apart from these obligations,  the programmer is free 
to choose between different representations on the grounds of efficiency or 
simplicity. Some programming languages provide mechanisms for hiding the 
implementation of an abstract type so that reference to the concrete represen
tation is not permitted elsewhere in the program. Such 'abstraction barriers ' 
are useful in the design of large programsj in particular, a representation can 
be changed without affecting the validity of the rest of the program. 

It is beyond the scope of this book to describe specific mechanisms for 
handling abstract types. Instead, we shall content ourselves with a few ex
amples of the general idea of viewing a type in terms of its operations rather 
than its values. In particular, we shall discuss alternative implementations 
of the same set of abstract operations in order to compare their advantages 
and disadvantages . First of all, though, we need to consider the notion of 
representation in more detail. 

8.4.1 Abstraction functions 

In order to formalise the notion of representing one class of values by another, 
we introduce the idea of an 'abstraction' function abstr . Suppose A denotes 
the class of values to be represented and B denotes the representing type. 
The function abstr has type: 

abstr : :  B -+ A 

If abstr b = a, then b is said to represent the value a .  The minimal reasonable 
requirement on abstr is that it should be surjective, that is, every value a 
in A should have at least one representation b for which. abstr b = a .  If, in 
addition, abstr is a bijective function, then each value in A is represented by 
a unique value in B. However, we do not require that abstr be bijective, nor 
even that it be a total function. If abstr is total, then every element of B 
will represent some value in Aj if not, then only certain elements of B will 
be 'valid' representations. This point is discussed further below. 

A simple example of a bijective abstraction function is one that de
scribes the correspondence between [0:] and the type ( list 0:) discussed in 
Section 8.3.2: 

abstr . .  ( list 0:)  -+ [0:] 
abstr Nil = [ ] 
abstr ( Cons z zs) = z : abstr u 
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On the other hand, the function: 

abstr nat -+ num 
abstr Zero = 0 
abstr (Succ :t ) = abstr :t + 1 
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which formalises the correspondence between nat and the natural numbers 
is not bijective: every partial element of nat is mapped to . L  However, every 
natural number is associated with a unique finite element of nat . 

The above examples of abstraction functions are all definable within our 
programming notation but this will not be the case in general. The function 
abstr belongs to the wider class of general mathematical functions and must 
be understood in this sense. To illustrate this point , consider the problem of 
representing sets in our programming language. In mathematical notation, 
the empty set is denoted by { } , a singleton set containing just the value :t is 
denoted by {:t} ,  and the union of two sets X and Y is denoted by X U Y. 
The abstraction function: 

abstr 
abstr [ ]  
abstr (:t : :ts ) 

[a] -+ set a 
= { }  
= { :t } U abstr :t8 

describes a representation of sets by lists .  In effect , it says that a set is 
represented by listing its elements in some order, possibly with duplicates . 
For instance, the set {1 ,  2, 3} is represented by the lists [1 , 2 , 3] , [3, 2, 2, 1] and 
[1, 1 , 2 , 2 , 3] ,  as well as many others . Mathematical sets are not provided as 
primitive, so abstr is not a legal definition in our programming notation . 

8.4.2 Valid representations 

Suitably formulated, the function abstr : :  B -+ A gives complete information 
about how elements of A are represented by elements of B.  In particular, 
if (abstr b) is well-defined, then b is said to be a valid representation. It 
is sometimes convenient to introduce an explicit predicate, valid say, that 
determines what representations are valid. The intention is that arguments 
to abstr are considered to be restricted to those :t for which (valid :t) is true. 

To illustrate, suppose we want to represent sets of values by lists . Con-
sider again the abstraction function: 

abstr 
abstr [ ]  
abstr (:t : :ts) 

[a] -+ set a 
= { }  
= { :t } U abstr :t8 

and the following three definitions of a valid representation: 

valid1 :t8 = True 
valid2 :ts = nodups :ts 
valida :t8 = nondec :t8 
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Figure 8.2 Commuting diagrams. 

Here (nodups xs) is the condition that xs contains no duplicate elements and 
(nondec xs) is the condition that xs is a list in non-decreasing order. The 
pairs ( abstr, valid1 ) ,  (abstr, valid2 ) and ( abstr , valida) describe three differ
ent representations of finite sets in terms of lists .  In the first representation, 
every (finite) list is a valid representation of some set ; in the second only 
lists that do not contain duplicates are valid, while in the third only lists in 
non-decreasing order are considered valid representations. 

8.4.3 Specifying operations 

As well as formalising the correspondence between values of A and B, the 
abstraction function abstr :: B _ A can also be used to specify corresponding 
operations. For example, consider the operation: 

addset .. a - set a _ set a 
addset x s = {x} U s 

that adds an element x to a set s .  The function: 

insert : :  a - [a] _ [a] 

which implements this operation in terms of lists is specified by the equation 

abstr ( insert x xs) = addset x ( abstr xs) 

Such specifications are often pictured as so-called 'commuting diagrams'. In 
Figure 8.2, the class of values to be represented is placed above the rep
resenting type and the abstraction function is drawn as an arrowed line. 
Corresponding operations are drawn in a similar way. A diagram is said to 
commute if both ways of following the arrows lead to the same result . This 
means we require 

abstr . ( insert x) (addset x)  . abstr 
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Here are three possible implementations of insert: 

insert1 x xs = [xl * xs 

insert2 x xs = [xl * [y I y - XSj x '" yl 

insertS x xs = takewhile « x )  xs * [xl * dropwhile (::;  x )  xs 
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The function insert1 is a valid implementation of addset under the abstrac
tion mapping ( abstr , valid1 ) . Since ( insert2 x xs) is a non-duplicated list 
if xs is , insert2 is a valid implementation for ( abstr, valid2) .  Finally, since 
( insertS x xs) is in non-decreasing order if xs is, we have that insertS is 
valid for the abstraction mapping (abstr, valid3) .  We leave the proof of these 
claims to the reader. 

8.4.4 Queues 

We shall now illustrate the ideas introduced above by considering some ex
amples of abstract types, starting with queues . Informally, a queue is a list of 
values which are processed in a special way. Suppose ( queue a) denotes some 
collection of values of type a on which the following operations are defined: 

start . . queue a 
join . . queue a --+ a --+ queue a 
front . . queue a --+ a 
reduce . .  queue a --+ queue a 

The informal interpretation of these operations is as follows :  start generates, 
or 'starts' ,  an empty queuej (join q x) returns a queue which is identical to 
q except that x has 'joined' as a new last memberj (front q) is the value at 
the 'front ' of the (non-empty) queue q; and (reduce q) is q 'reduced' by the 
removal of the front element. 

We can express the intended relationships between the various operations 
by the following equations: 

front (join start x )  
front (join (join q x) y )  
reduce (join start x )  

= x 
= front (join q x )  
= start 

reduce (join (join q x) y) = join ( reduce (join q x)) y 

These equations constitute what is called an algebraic specification of the 
abstract type ( queue a) . Although they look like formal definitions of front 
and reduce in terms of a data type based on the constructors start and join, 
they should be understood only as expressing certain algebraic laws that the 
four operations must satisfy. On the other hand, it is certainly possible to 
base the representation of queues on the type: 

repqueue a : := Start I Join (repqueue a) a 
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under the abstraction function: 

abstr 
abstr Start 
abstr (Join q x )  

NEW TYPES 

repqueue a -t queue a 
= start 

join (abstr q) x 

With minor notational changes, the above equations can then be interpreted 
as formal definitions of the functions front' and reduce' which implement 
the operations front and reduce . The essential characteristic of this par
ticular representation is that evaluating (join q x) requires constant time, 
while reducing a queue and determining the front element each require time 
proportional to the number of elements in the queue. 

An obvious alternative representation of queues is to use lists . We shall 
leave details as an exercise. A third representation of queues is to use bal
anced trees, a data structure we will describe in Chapter 9. In this represen
tation all of the operations can be carried out in only o (log n) steps, where 
n is the number of elements in the queue. 

8.4.5 llrrays 

A second example of an abstract type is provided by arrays. Basically, an 
array is a finite list whose elements may be modified and inspected, but the 
number of elements in the list does not change. Suppose ( array a) denotes 
the abstract type defined by the following four operations: 

mkarray . . [a] -t array a 
length . .  array a -t num 
lookup . .  array a -t num -t a 
update . . array a -t num -t a -t array a 

Informally, (mkarray xs) creates an array from a given list xs; the value 
( length A) is the number of elements in the array; ( lookup A k) returns the 
kth element of A, counting from 0; and (update A k x) returns an array that 
is identical to A except that its kth element is now x .  

We can express the relationships between the operations by the following 
equations: 

length (mkarray xs) = #xs 
length (update A k x ) = length A 

lookup (mkarray xs) k = xs ! k 
lookup ( update A j x) k = x ,  if j = k 

= lookup A k,  otherwise 

One way to represent arrays is by a pair of values , a list and a number 
giving the length of the list . Suppose we set : 

reparray a == ( [a] , num) 
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and define: 
valid 
valid (xs ,  n) 

abstr 
abstr (xs , n) 

reparmy 0: -t bool 
(#xs = n) 

reparmy 0: -t array 0: 
mkarmy xs 

The array operations can be implemented by the definitions : 

mkarmy' xs 

length' (xs ,  n) 
lookup' (xs ,  n) k 
update' (xs ,  n) k x 

= (xs, #xs) 
= n 

xs ! k 
(ys, n), if k < n 
where ys = take k xs * [x]* 

drop (k + 1 )  xs 
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Under this representation, the cost of either accessing or modifying an array 
element is O(n) steps, where n is the length of the array. In particular, 
evaluating: 

lookup' ( update' (xs , n) k x) k 
requires O(  n) steps.  

A second representation of arrays is obtained by replacing the list in the 
first representation by a function defined on an initial segment of the natural 
numbers. Define: 

reparmy 0: == (num -t 0:,  num) 

and the abstraction function: 

abstr .. reparmy 0: -t army 0: 
abstr (/ , n) = mkarray (map f [O . .  n - 1])  

The array operations are then implemented by the functions: 

mkarmy' xs (/ , #xs) 

length' (J, n) 
where f k = xs ! k 
n 

lookup' (J , n) k = f k 
update' (J , n) k x = (g, n) ,  

where 
if O :::; k A k < n  

g j = x ,  if j = k 
= f j ,  otherwise 

With this representation, the cost of evaluating an array lookup depends on 
the history of updates . For example, evaluating: 

lookup' ( update' (xs ,  n) k x) k 

requires only constant time. 
In the next chapter we shall describe a third representation of arrays in 

which the cost of computing lookup or update is proportional to o (log n) 
steps, where n is the length of the array. 
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8.4.6 Sets 

The primary example of an abstract type is the notion of a set. In fact, all 
of mathematics can be explained in terms of the theory of sets. Sets can 
be represented by lists, lists with no duplicates , ordered lists, trees, boolean 
functions, and so on, but no representation is more fundamental than any 
other. The programmer is therefore free to choose between them on the 
grounds of what set operations are required and how efficiently they can be 
implemented. 

Suppose we are interested in the abstract type set a which consists of the 
following six operations: 

empty . .  set a 
unit . . a -+ set a 
union . .  set a -+ set a -+ set a 
inter . . set � -+ set a -+ set a 
differ . .  set a -+ set a -+ set a 
member . .  a -+ set a -+ bool 

The meanings of these operations can be explained informally as follows .  

1 .  The constant empty denotes the empty set ; this set i s  also denoted by 
the special symbol { } .  

2. The function unit takes an element x of type a and returns a singleton 
set containing x ;  in mathematical notation we write unit x = {x} . 

3. The f�nction union takes two sets S and T and returns the set which 
contains all the elements of S and T; in mathematical notation we 
write union S T = S U T. 

4. The function inter computes the intersection of two sets. The result of 
( inter S T) is the set consisting of the common members of S and T. 
The mathematical notation for this operation is n ;  thus inter S T = 
S n T. 

5. The function differ computes the difference of two sets. The result of 
(differ S T) is the set which contains all the elements of S that are not 
in T. In mathematical notation we write differ S T = S \ T. 

6. The predicate member takes a value x and a set S and returns True 
or False depending on whether x is a member of S. In mathematical 
notation, (member x S) is written as x € S. 

In many applications the operations: 

insert x S = S U {x} 
delete x S = S \ {x} 
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together with empty and member, are the only ones required. A type based 
on these four operations is often called a 'dictionary' .  

The crucial operation on sets is  the test for membership. It  satisfies the 
following laws: 

x e {} = False 
x e {y} = (x = y) 
x e (A U B) = (x e A) V (x e B) 
x e (A n B) = (x e A) J\ (x e B) 
x e (A \ B)  = (x e A) J\ ,(x e B) 

for all values of x .  In addition, two sets are defined to be equal if and only 
if they have the same members. From these facts we can derive a number of 
laws about U ,  n and \ . In particular, 

A U  (B U C) = 
A u B  = 
A u A  = 

A U { }  

(A U B) U  C 
B u A  
A 
A 

(associativity) 
( commutativity) 
(idempotence) 
(identity) 

Thus, U is like * except that it is commutative and idempotent as well as 
associative. 

We have already seen how to represent finite sets by arbitrary lists, lists with 
no duplicates , and ordered lists. It is interesting to compare the efficiency 
of the various set operations under these three representations . For brevity, 
we consider only the implementations of U and \. Using unrestricted lists we 
can define: 

union xs ys = xs * ys 
differ xs ys = [x I x +- XSj ,member x ys] 

One suitable definition of member is: 

member x [ ]  = False 
member x (y : xs) = (x = y) V member x xs 

Suppose xs has length n and represents a set of N elements .  Thus, N is 
the number of distinct elements in xs . Let m and M be the analogous 
values for ys . Then evaluating ( union xs ys) takes O(  n) steps, and evaluating 
(differ xs ys) takes O(n X m) steps. On the other hand, n can be arbitrarily 
larger than N j similarly for m and M. 

Using non-duplicated lists, we have to change the definition of union to 
read: 

union xs ys = xs * [y I y +- YS j ,member y xs] 

Both (union xs ys) and (differ xs ys ) now require only 0 (N X M) steps. 
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Finally, using ordered lists we can define: 

'Union [ ] ys = ys 
'Union (x : xs) [ ] = x :  xs 
'Union (x : xs) (y : ys) = x :  'Union xs (y : ys) ,  if x < y 

= x : 'Union xs ys , if x = y 
= y : 'Union (x : xs) ys, if x >  y 

differ [ ] ys = [ ] 
differ (x : xs) [ ] = x :  xs 
differ (x : xs) (y : ys) = x :  differ xs (y : ys) ,  if x < y 

= differ xs ys , if x = y 
= differ (z : xs) ys , if x >  y 

With this representation, evaluating ( 'Union xs ys) and (differ xs ys) requires 
only O(N + M) steps each. 

Of the three representations , it therefore appears that the one using or
dered lists is the best . The union, intersection and difference of two sets can 
be evaluated in time proportional to the sum of the sizes of the sets .  On the 
other hand, the test for set membership and the two dictionary operations: 

insert x xs = 'Union ( 'Unit x) xs 
delete x xs = differ xs ( 'Unit x) 

each require linear time. In Chapter 9 we shall describe a representation for 
sets in which each of member, insert and delete can be computed in O (log n) 
steps, where n is the size of the given set . 

8.4.7 Infinite sets 

The representations discussed above only work for finite sets. More precisely, 
consider the infinite list [1 . . ] representing the infinite set of positive integers 
and the test : 

member 0 [1 . .  ] 

Since 0 is not in the set of positive integers, we require that the above expres
sion evaluates to False. Instead, it evaluates to 1... The process of searching 
an infinite list for a value that is not present never terminates . 

We can go some way to solving this problem by choosing a different 
representation. Suppose we represent a set by a function that tests for mem
bership. The abstraction function here is: 

abstr : :  (a -+ bool) -+ set a 
abstr p = {x  I p x = TrtLe} 

Under this representation, the infinite set of positive integers is represented 
by the function: 

positive x = x > 0 A integer x 
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The given set operations are implemented by the definitions: 

empty = const False 
unit x = (= x )  
union p q = r where r x = p x V q x 
inter p q = r where r x = p x l\ q x  
differ p q = r where r x = p x 1\ -.q  x 
member x p  = p x  

On the other hand, with this representation there is no way to test the 
equality of two sets, or even to list the elements of a finite set . If we are 
representing just sets of positive integers (say), then the function: 

enumerate p = [x I x - [1 . . ] ; p x] 

will return a list of the elements of the set represented by the predicate p ,  
but this list will always be infinite or partial. 

Exercises 

8.4.1 Prove that each of insert1 , insert2 and insert3 satisfies the specifica
tion for inserting a value into a set . 

8.4.2 Consider the following representation of queues : 

queue a == (num -+ a, num) 

The abstraction function is: 

= start abstr (f , 0) 
abstr (f , n + 1) = join ( abstr (J , n)) (f (n + 1)) 

Implement the queue operations and show they satisfy their algebraic speci
fications . 

8 .4.3 It is possible to represent lists by functions (from lists to lists) under 
the abstraction and representation functions: 

abstr 
abstr f 

repm 
repro xs 

. . 
= 

. .  
= 

( [a] -+ [a] ) -+ [a] 
J [ ] 

[a] -+ ( [a] -+ [a] ) 
(xs*) 

Thus a list xs is represented by a function f such that f [ ]  = xs . 
Construct definitions of the functions cons and cat satisfying: 

abstr ( cons x J) = x :  abstr f 
abstr ( cat f g) = abstr f * abstr 9 
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Synthesise a function rev such that : 

abstr . rev . repm = reverse 

and hence derive yet another definition of list reversal which works in linear 
time. 

8.4.4 Consider the following type for representing lists: 

seq a : := Nil I Unit a I Cat (seq a) ( seq a) 

Give the definition of a suitable abstraction function abstr :: seq a --t [a] .  
Write down the specification of the function tailseq which corresponds to  tl 
on lists. Give an implementation of tailseq and show that it meets the specifi
cation. In general, what are the advantages and disadvantages of representing 
lists in this way? 

8.4.5 Consider the problem of describing a simple line editor. Suppose a 
line is a sequence of characters C1 C2 • • •  Cn together with a position p ,  where 
o � p � n, called the cursor. 
The following operations on lines are required: 

newline 
movestart 
moveend 
moveleft 

moveright 
insert 
delete 

line 
line --t line 
line --t line 
line --t line 
line --t line 
char --t line --t line 
line --t line 

The informal description of these operations is as follows: (i) the constant 
newline denotes an empty line; (ll) moveleft moves the cursor one position 
to the left (if possible) ;  similarly for moveright ;  (iii) movestart places the 
cursor at the beginning of the line; similarly, moveend places the cursor at 
the end of the line; (iv) delete deletes the character at the cursor position; 
and finally (v) ( insert z ) inserts a new character at the cursor position. Give 
formal specifications for these operations, either algebraically or by a suitable 
abstract model. Suggest a suitable representation for line , implement the 
given operations, and show that they meet their specifications .  



Chapter 9 

Trees 

Any data-type which exhibits a non-linear (or 'branching') structure i s  gener
ically called a tree. Trees serve as natural representations for any form of 
hierarchically organised data. One example was given in the last chapter, 
where the syntactic structure of arithmetic expressions was modelled as a 
tree. As we shall see, trees are also useful for the efficient implementation of 
functions concerned with search and retrieval. 

There are numerous species and subspecies of tree. They can be classified 
according to the precise form of the branching structure, the location of 
information within the tree, and the nature of the relationships between the 
information in different parts of the tree. In the present chapter we shall 
study two or three of the most common species , describe a little of the basic 
terminology associated with trees, and outline some of the more important 
applications .  

9.1 Binary trees 

As its name implies , a binary tree is a tree with a simple two-way branching 
structure. This structure is captured by the following type declaration: 

btree a : := Tip a I Bin ( btree a) ( btree a) 

A value of ( btree a) is therefore either a 'tip' (indicated by the constructor 
Tip) ,  which contains a value of type a, or a binary 'node' (indicated by the 
constructor Bin), which consists of two further trees called the left and right 
subtrees of the node. For example, the tree: 

Bin ( Tip 1) 
(Bin ( Tip 2) ( Tip 3» 

consists of a binary node with a left subtree ( Tip 1) ,  and a right subtree 
(Bin ( Tip 2) ( Tip 3» which, in tum, has a left subtree ( Tip 2) and a right 
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Figure 9 .1  Upward and downward trees . 

subtree ( Tip 3) .  Compare this element of ( btree num) with the tree: 

Bin (Bin ( Tip 1) ( Tip 2)) 
( Tip 3) 

TREES 

Although the second tree contains the same sequence of numbers in its tips 
as the first , the way the iIiformation is organised is quite different and the 
two expressions denote distinct values. 

A tree can be pictured in one of two basic ways, growing upwards or 
growing downwards .  Both orientations are illustrated in Figure 9.1 .  The 
downward pointing orientation is the one normally preferred in computing, 
and this is reflected in some of the basic terminology of trees . For instance, 
we talk about the 'depth' of a tree rather than its 'height' .  The depth of a 
tree is defined below. 

9 . 1 . 1  Measures on trees 

There are two important measures on binary trees , size and depth. The size 
of a tree is the number of tips it contains . Hence: 

size ( Tip x ) = 1 
size (Bin t1 t2 ) = size t1 + size t2 

The function size plays the same role for trees as (#) does for lists .  In 
particular, a tree is finite if and only if it has a well-defined size. 

There is a simple, but important , relationship between the number of tips 
and the number of nodes in a finite tree: the former is always one more than 
the latter. If we count the number of nodes by the function nsize , where: 

then we have: 

nsize ( Tip x ) = 0 
nsize (Bin t1 t2 ) = 1 + nsize t1 + nsize t2 

size t = 1 + nsize t 
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Figure 9.2 Trees of depth 3 and 4. 

for all binary trees t .  The result can be proved by structural induction and 
is left as an exercise. It also holds ,  by default , in the case of infinite trees, 
since both sides of the above equation reduce to ..L 

The second useful measure on trees is the notion of depth. The depth of 
a finite tree is defined as follows: 

depth ( Tip x ) = 0 
depth (Bin t1 t2 ) = 1 + (depth t1 ) max ( depth t2) 

In words, the depth of a tree consisting of a single tip is 0; otherwise it is 
one more than the greater of the heights of its two subtrees. For example, 
the tree on the left in Figure 9.2 has depth 3 , while the one on the right 
has depth 4. Notice these trees have the same size and, indeed, exactly the 
same sequence of tip values.  The notion of depth is important because it is 
a measure of the time required to retrieve a tip value from a tree. 

Although two trees of the same size need not have the same depth, the 
two measures are not independent . The following result is one of the most 
important facts about binary trees . It says that : 

size t � 2 �  depth t 

for all (finite) trees t .  We shall prove this inequality by structural induction 
on t .  

Case ( Tip x) . We have: 

size ( Tip x ) = 1 

as required. 

= 2 � 0  
= 2 � depth ( Tip x ) 

(size .1) 
(�.1)  
(depth.1) 
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Case (Bin t1 t2 ) .  Assume, by way of induction, that : 

and let : 

We now have: 

size t1 :$ 2 � depth t1 
size t2 :$ 2 � depth t2 

d = (depth t1 ) max (depth t2) 

size (Bin t1 t2) = size t1 + size t2 

as required. 0 

:$ 2 � (depth t1 ) + 2 � (depth t2 ) 
:$ 2 � d + 2 � d 

2 � (1 + d) 
= 2 � (depth (Bin t1 t2 ))  

( size.2) 
(hypothesis) 
(monotonicity of �) 
(arithmetic) 
( depth.2) 

By taking logarithms (to base 2) ,  we can restate the result in the following 
equivalent form: 

depth t 2: log2 (size t )  

for all finite trees t .  
Given any positive integer n, it  is  always possible to construct a tree of 

size n with depth d satisfying: 

where r x 1 denotes the smallest integer k 2: x. Such trees are said to be 
minimal. In general, there will be more than one minimal tree of a given 
size. Minimal trees are useful because, by making a tree minimal, we can 
ensure that the cost of retrieving tip values is as small as possible. 

9 . 1 . 2  Map and fold over trees 

The generic functions map and fold for lists have analogues mapbtree and 
foldbtree for binary trees . They are defined as follows:  

mapbtree . .  (a -+ (3) -+ btree a -+ btree (3 
mapbtree f ( Tip x) Tip (J x) 
mapbtree f (Bin t1 t2 ) = Bin (mapbtree f t1 ) (mapbtreef t2) 

foldbtree . .  (a -+ Q -+ Q) -+ btree Q -+ Q 

foldbtree ( Ell ) ( Tip x) x 

foldbtree ( Ell ) (Bin t1 t2 ) = (Joldbtree ( EB) t1 ) Ell (Joldbtree ( Ell ) t2 ) 

Many qperations on trees can be defined in terms of these functions . For 
example, the sum of the tips in a tree of numbers can be defined by: 

sumtips = foldbtree ( + ) 
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The size of a tree is defined by: 

size = foldbtree (+ ) . mapbtree (const 1) 

and the depth of a tree is defined by: 

depth = foldbtree (ffi) . mapbtree ( const 0) 
where d1 ffi d2 = 1 + (d1 m ax  d2) 
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Finally, the function tips for listing the tip values of a tree in left to right 
order can be defined by: 

tips = foldbtree (*) . mapbtree unit 
where unit x = [xl 

The function mapbtree satisfies laws similar to the function map. In 
particular, we have: 

mapbtree f . mapbtree 9 = mapbtree (f . g) 

for any functions f and g .  We also have the identity: 

map f . tips = tips · mapbtree f 

which relates map,  tips and mapbtree. 
There is also a law relating foldbtree and foldr1 (or, equally, foldl1 ) .  It 

says that if ffi is associative, then: 

foldbtree (ffi) = foldr1 (ffi) . tips 
= foldl1 (ffi) . tips 

(Note that tips always returns a non-empty list .) All of the above identities 
can be proved by structural induction. 

Like map and fold with lists , we can use foldbtree and mapbtree to define 
many functions over trees without using recursion explicitly. Since the re
sulting definitions are shorter, this is certainly a good idea in any application 
where a number of tree processing functions are required. On the other hand, 
a direct recursive definition is just as good in simple situations . Unlike lists, 
there is a natural recursive decomposition of trees in terms of their subtrees, 
so a definition which exhibits the same kind of recursive decomposition is 
often simplest . 

9.1 .3 Labelled binary trees 

Finally, we introduce a slight variation on the basic structure of binary trees . 
By definition, a labelled binary tree is a value of the following type: 

lbtree Q (3 : : =  Tip Q I Bin (3 (lbtree Q (3) ( lbtree Q (3) 
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Here, binary nodes are 'labelled' with values of a second type f3. Apart from 
these additional values , a labelled binary tree has exactly the same structure 
as the earlier kind. Because extra information is available, many operations 
on binary trees can be implemented efficiently in terms of labelled binary 
trees . We shall see examples of this idea in subsequent sections. 

Exercises 

9.1 .1  Prove that the number of tips in a binary tree is always one more than 
the number of internal nodes. 

9.1 .2 The subtrees of a binary tree t can be defined by: 

subtrees ( Tip z) = [Tip z] 
subtrees (Bin t1 t2 ) = subtrees t1 * subtrees t2 * [Bin t1 t2] 

State and prove a relationship between #(subtrees t )  and size t . 

9 .1 .3 Show that :  
depth t � size t - 1 

for all finite binary trees. 

9.1 .4 Prove that if zs is a list of 2R values, then there is a unique minimal 
tree t such that tips t = zs . 

9.1 .5 Prove that a minimal tree of size n has depth [log2 n 1 -

9.1 .6 Design a function that takes a non-empty list zs into a minimal tree t 
such that tips t = zs. 

9.1 .7 Prove the laws: 

mapbtree f . mapbtree 9 = mapbtree (J . g) 
map f . tips = tips · mapbtree f 

foldbtree ( EEl ) = foldr 1 (EEl) . tips 

where, in the last law, EEl is associative. 

9.1 .8 Suppose f = foldbtree (EEl),  where EEl is associative with identity element 
e . Prove that f t = 1m t e, where: 

1m = foldbtree ( .) . mapbtree (EEl) 

Using this result and the fact that : 

tips = foldbtree ( * ) . mapbtree unit 
where unit z = [z] 
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derive the equation: 
tips t = mtips t [ ]  

where 
mtips = foldbtree ( .) . mapbtree ( :) 

Compare the costs of computing ( tips t) by the two definitions .  (Hint: Recall 
that the cost of computing zs * ys is proportional to #zs.) 

9.2 Huffman coding trees 

As a first example of the use of binary trees, we shall consider the problem 
of coding data efficiently. As many computer users know only too well, it 
is often necessary to store files of information as compactly as possible in 
order to free precious space for other, more urgent, purposes . Suppose the 
information to be stored is a text consisting of a sequence of characters . The 
ASCII standard code uses seven bits to represent each of 27 = 128 possible 
different characters ,  so a text of n characters contains 7n bits of information. 
For example, the letters 't ' ,  'e', and 'x' are represented in ASCII by the codes: 

t --t 1110100 
e --t 1100101 
x --t 1111000 

In particular, the text "text" is coded in ASCII as the sequence: 

11101001100101111 10001110100 

of 28 bits. As AS CII is a fixed-length code, the original text can be recovered 
by decoding each successive group of seven bits .  

One idea for reducing the total number of bits required to code a text 
is to abandon the notion of fixed-length codes, and seek instead a coding 
scheme based on the relative frequency of occurrence of the characters in the 
text . The basic idea is to take a sample piece of text, estimate the number of 
times each character appears, and choose short codes for the more frequent 
characters and longer codes for the rarer ones . For example, if we take the 
codes: 

t --t 0 
e --t 10 
z --t 11 

then "text" can be coded as the bit sequence 010110 of length 6. 
It is important to realise that codes must be chosen in such a way as to 

ensure that the coded text can be deciphered uniquely. To illustrate, suppose 
the codes had been: 

t --t 0 
e --t 10 
z --t 1 
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Under this scheme, "text" would be coded as the sequence 01010 of length 
5. However, the string "tee" would be coded by exactly the same sequence, 
and this is obviously not what is wanted. The simplest way to prevent this 
happening is to choose codes so that no code is a proper initial segment (or 
prefix) of any other. 

As well as requiring unique decipherability, we also want the coding 
scheme to be optimal. An optimal coding scheme is one which minimises 
the expected length of the coded text . More precisely, if characters Cj , for 
1 :5  j :5 n, have probabilities of occurrence Pj, then we want to choose codes 
with lengths lj such that 

is as small as possible. 
One method for constructing an optimal code satisfying the prefix prop

erty is called Huffman coding (after its inventor, David Huffman) . Each 
character is stored as a tip of a binary tree, the structure of which is deter
mined by the computed frequencies . The code for a character c is a sequence 
of binary values describing the path in the tree to the tip containing c. Such 
a scheme guarantees that no code is a prefix of any other. We can define a 
path formally by: 

step 
path 

Left I Right 
[step] 

A path is therefore a sequence of steps, each of which is one of the two values 
Left or Right . A path can be traced by the function trace , defined by: 

trace ( Tip x ) [ ]  = x 
trace (Bin t1 t2 ) (Left : ps) = trace t1 ps 
trace (Bin t1 t2 ) (Right : ps) = trace t2 ps 

If ps is a path in t leading to a tip , then (trace t ps) is the value associated 
with the tip; otherwise trace t ps = . L  

To illustrate the idea, consider the tree: 

Bin (Bin ( Tip 'x') ( Tip 'e'» 
( Tip 't ') 

In this tree the character 'x' is coded by the path [Left, Left] , character "e' 
by [Left,  Right] ,  and character "t ' by [Right] . So "t '  is coded by one bit of 
information, while the others require two bits .  For example, the string "text" 
is encoded by the sequence: 

[Right ,  Left, Right, Left, Left , Right] 

which is the same as 010110 when Right is replaced by 0 and Left by 1 .  
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There are three aspects to the problem of implementing Huffman coding: 
(i) building a binary tree; (ii) coding a sequence of characters ; and (iii) 
decoding a coded sequence. We shall deal with these stages in reverse order. 

Decoding. Suppose ps is a sequence of steps representing a sequence xs 
of characters with respect to a given tree t . The function decodexs, where 
decodexs t ps = xs , can be defined in the following way: 

decodexs t ps = traces t t ps 
[xl traces t ( Tip x) [ l  

traces t ( Tip x )  (p : ps) 
traces t (Bin t1 t2 ) (Left : ps ) 
traces t (Bin t1 t2 ) (Right : ps) 

[xl * traces t t (p : ps) 
traces t t1 ps 
traces t t2 ps 

The first argument of traces is the given tree, while the second argument 
is the subtree currently being traversed. Each time a tip is reached, the 
associated character is produced and t is regenerated in order to process the 
remaining paths , if any. The time for decoding is clearly linear in the length 
of ps . Notice that if ps does not correspond to a legal sequence of paths , 
then ( decodexs t ps) will be a partial list . 

Coding. Next , let us deal with step (ii) , the coding phase. Here, the input 
is a sequence of characters and the output is a sequence of steps. We can 
define: 

codexs t = concat . map ( codex t) 

so the problem reduces to how to code a single character. The following 
definition of codex is straightforward, but leads to an inefficient algorithm: 

codex ( Tip y) x [ 1 , 
codex (Bin t1 t2 ) x = Left : codex t1 x ,  

= Right : codex t2 x ,  

The formal definition of member is: 

= (x = y) 

if x = y 
if member t1 x 
if member t2 x 

member ( Tip y) x 
member (Bin t1 t2 ) x member t1 x V member t2 x 

Note that if x is not a tip value in t, then codex t x = .L .  
The trouble with the definition of codex lies in  the many costly calcu

lations of member. Since the time to calculate (member t x) is O(n) steps, 
where n = size t ,  the time T( n) required to compute ( codex t x) in the worst 
possible case satisfies: 

T(n) = T(n - 1) + O(n) 

and so T(n) = O(n2 ) . The worst possible case arises , for instance, when 
every left subtree has size 1 ,  and x appears as the rightmost tip value. It also 
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arises when every right subtree has size 1, and x appears as the leftmost tip 
value. 

One way to improve this unacceptable quadratic behaviour is to define: 

codex t x = hd (codesx t x)  
codesx ( Tip y) x = [[ ]) , 

= [ ] ,  
if x = y 
otherwise 

codesx (Bin tl t2 ) x = map (Left :)  ( codesx tl x)* 
map (Right : )  ( codesx t2 x) 

This is  an example of the list of successes technique described in Chapter 6. 
The value ( codesx t x)  is a list of all paths in t which lead to a tip containing 
x. If t is a tip , then the list is either empty (if the characters do not match) , 
or is a singleton list containing the empty path. If t is not a tip , then the final 
list is the concatenation of the list of paths through the left subtree with the 
list of paths through the right subtree. If t contains exactly one occurrence 
of x ,  then ( codesx t x) will be a singleton list containing the desired path. We 
shall leave as an exercise the proof that this version of codex requires only 
O(n) steps. 

Constructing a Huffman tree. Now we must deal with the most interest
ing part , building a coding tree. Let us suppose that the relative frequencies 
of the characters have been computed from the sample, so we are given a list 
of pairs: 

[( Ct , Wl ) ,  ( C2 ' W2), . . .  , ( cn , wn)] 

where Cl , C2 , • • •  , Cn are the characters and Wl , W2, • • •  , Wn are numbers , called 
weights , indicating the frequencies . The probability of character Cj occurring 
is therefore Wj/W , where W = I: Wj . Without loss of generality, we shall 
also suppose that the weights satisfy WI � W2 � • • .  � Wn , so the characters 
are listed in increasing order of likelihood. 

The procedure for building a Huffman tree is as follows .  The first step 
is to convert the list of character-weight pairs into a list of trees by applying 
(map Tip) .  Each tip will contain a pair (x ,  w) ,  where x is a character and 
W its associated weight. This list of trees is then reduced to a single tree by 
repeatedly applying a function which combines two trees into one, until just 
a single tree is left . Thus: 

build = until single ( combine · map Tip) 

Here, (until p f) is the function that repeatedly applies f until p becomes 
true, and single is the test for a singleton list . 

The effect of combine on a list ts of trees is to combine two trees in ts 
with the lightest weights, where: 

weight ( Tip (x , w)) = W 
weight (Bin tl t2 ) = weight tl + weight t2 
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Thus, the weight of a tree is the sum of the weights in its tip nodes . 
In order to determine at each stage which are the lightest trees , we simply 

keep the trees in increasing order of weight . Thus: 

where: 

combine ( tl : t2 : ts) = insert (Bin tl t2 ) ts 

insert 'U [ ]  = [ 'U 1 
insert 'U ( t  : ts) = 'U :  t : ts , if weight 'U :£ weight t 

= t :  insert 'U ts , otherwise 

Although this definition of combine is adequate, it leads to an inefficient 
algorithm as tree weights are constantly recomputed. A better solution is to 
store the weights in the tree as labels, and this is where the idea of using a 
labelled binary tree comes in. Consider the type: 

htree : := Leaf n'Um char I Node n'Um htree htree 

Here, a tip node is indicated by a new constructor Leaf that takes two ar
guments :  a number and a character. A binary node is indicated by the new 
constructor Node. The numeric label is a value w satisfying: 

where: 

w = weight (Node w tl t2 ) 

weight (Leaf w x ) = w 
weight (Node w tl t2 ) = weight tl + weight t2 

By maintaining this relationship we can avoid recomputing weights .  
To implement the change, we redefine: 

b'Uild 
leaf (x ,  w)  

= 'Unlabel . ( 'Until single combine) . map leaf 
= Leaf w x 

where 'Unlabel throws away the labels after they have served their purpose: 

'Unlabel (Leaf w x ) = Tip x 
'Unlabel (Node w tl t2 ) = Bin ( 'Unlabel tl ) ( 'Unlabel t2 ) 

We must also modify the definition of combine: 

combine ( tl : t2 : ts) = insert (Node w tl t2 ) ts 
where w = wt tl + wt t2 

wt (Leaf w x ) 
wt (Node w tl t2 ) 

= w 
= w 

The modification of insert is left as an exercise. 
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Let us see this algorithm at work on an example. Consider the sequence: 

[( 'G' , 8) ,  ( 'R', 9), ('A' , 11) ,  ( 'T' ,  13), ('E', 17)] 

of characters and their weights .  The first step is to convert this into the list: 

[Leaf 8 'G', Leaf 9 'R', Leaf 11 'A', Leaf 13 'T', Leaf 17 'E'] 

of leaf trees. The next step is to combine the first two trees and rearrange 
the resulting trees in increasing order of weight . Thus we obtain: 

[Leaf 11 'A', 
Leaf 13 'T' ,  
Node 17 (Leaf 8 'G') (Leaf 9 'R') , 
Leaf 17 'E'] 

The result of the second step is the list : 

[Node 17 (Leaf 8 G) (Leaf 9 'R') , 
Leaf 17 'E', 
Node 24 (Leaf 11  'A') (Leaf 13 'T')] 

The third step gives: 

[Node 24 (Leaf 11 'A') (Leaf 13 'T') , 
Node 34 (Node 17 (Leaf 8 'G') (Leaf 9 'R')) 

(Leaf 17 'E')] 

so the final tree is: 

Node 58 (Node 24 (Leaf 11 'A') (Leaf 13 'T')) 
(Node 34 (Node 17 (Leaf 8 'G') (Leaf 9 'R')) 

(Leaf 17 'E')) 

In this tree, which is pictured in Figure 9.3, the characters 'A' , 'T' and 'E' 
are coded by two-bit sequences and 'G'  and 'R' by three-bit sequences . 

The average, or expected, length of a character code is: 

where 1; is the number of bits assigned to character c; . In the above example 
this value is: 

«11 + 13 + 17) X 2 + (8 + 9) X 3)/(8 + 9 + 11  + 13 + 17) 

or approximately 2.29. The crucial property of a Huffman code is that it 
minimises expected length. Putting it another way, a Huffman tree has the 
property that it is a binary tree, over tip values Wl , W2 , • • •  , Wn , which min
imises the sum of the "weighted" path lengths w;l; for 1 ::; j ::; n. For a 
proof of this fact , the reader should consult Knuth [3] or Standish [11 ] .  
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Figure 9.3 A Huffman coding tree. 

Exercises 

9.2 .1 Explain why a Huffman code has the prefix property. 

9.2 .2 Construct a code which does not satisfy the prefix property, but which 
nevertheless is such that every text can be uniquely decoded. 

9 . 2 .3 Consider the functions ( codexs t) and ( decodexs t) for coding and de
coding sequences of characters with Huffman's method. Show that : 

decodexs t ( codexs t xs) = xs 

for all finite sequences xs . 

9.2 .4 Suppose U(n) denotes the worst case cost of calculating ( codexs t x) 
for a tree t of size n, under the assumption that this list is empty. Show that 

U(n) = 0(1)  + max{U(m) + U(n - m) 1 1  � m < n} 

for n >  1 ,  and hence prove that U(n) = O(n) . 
Now suppose Sen) is the time required to compute the head of ( codexs t x) ,  
assuming that this list i s  not empty. Show that: 

Sen) = 0(1)  + max{S(m) max(U(m) + Sen - m)) 1 1  � m < n} 

for n > 1 ,  and hence prove that Sen) = O(n). 

9.2.5 Suppose we define: 

codemem t x = ( codex t x ,  member t x) 

Synthesise a new definition of codemem which does not depend on codex . Re
define codex in terms of codemem. What is the cost of calculating ( codex t x)  
with the new definition? 
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9.2 .6 Modify the definition of insert in the tree combining part of Huffman's 
algorithm to use the weight-labelled representation of Huffman trees . 

9.2.7 In the coding phase of Huffman's algorithm, the function codex is 
applied to every occurrence of every character in the text . But all we really 
need do is to compute ( codex t x )  just once for each character x ,  store this 
information in a table, and use the table for subsequent retrieval. This table 
can itself be implemented as a binary tree. Write functions for implementing 
this idea, and hence show that the cost of coding characters can be brought 
down to O (log n), where n is the number of characters. 

9.3 Binary search trees 

In this section we shall study a variety of tree, called a binary search tree, 
that is useful for representing values of the abstract type (set a)  in which the 
only set operations allowed are: 

empty . .  set a 
insert . . a � set a � set a 
delete . . a � set a � set a 
member . . a � set a � bool 

These operations are defined as follows :  

empty 
insert x s 
delete x s 
member x s 

= 

= 

= 

= 

{ }  
s U  {x}  
s \ {x}  
X E S  

We shall first introduce binary search trees as another example of labelled 
binary trees. Later on, we shall revise the definition slightly. Suppose t is 
a binary tree whose tip values are in increasing order when read from left 
to right . Label each subtree s of t with the rightmost tip value in the left 
subtree of s.  Because the tips are sorted, this value will be the largest value 
in the left subtree of s. The result is a binary search tree . Note that a binary 
search tree is a tree of type ( lbtree a a) .  

Here is how the information at the labels is used. Consider the function 
member which determines whether a value x appears as a tip value somewhere 
in a tree t. If x is less than the label of t, then x can only appear in the left 
subtree of t j  similarly, if x is greater than the label of t ,  it can only appear 
in the right subtree. Finally, if x equals the label of t, then x must be a tip 
value. We can therefore define member in the following way: 

member x ( Tip y)  = (x = y) 
member x (Bin y tt t2 ) = member x tt , if x < y 

= True, if x = y 
= member x t2 , if x > y 
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In the worst case, the time taken to compute (member t x) is proportional 
to the depth of t. If t is minimal, then the time required is at most O (log n) 
steps , where n = size t .  

The trouble with the given definition of binary search trees is that infor
mation is duplicated. With one exception, every value appears twice in the 
tree, once as a tip and once as a label. More precisely, suppose we define the 
functions : 

labels ( Tip x) 
labels (Bin x t1 t2 ) 

tips ( Tip x) 
tips (Bin x t1 t2 ) 

[ ]  
= labels t1 * [xl * labels t2 

[x] 
= tips t1 * tips t2 

for listing the labels and tips of a tree. Then we have: 

labels t = init ( tips t) 

whenever t is a finite binary search tree. The proof is a simple exercise in 
structural induction. Notice also that ( labels t) is a list in increasing order if 
( tips t) is. 

In order to avoid storing redundant information, suppose we throw away 
the tip values. This idea leads to a new type: 

bstree 0: : : = Nil I Bin 0: ( bstree 0:) ( bstree 0:) 

in which the constructor Tip is replaced by a constant Nil. We now define 
an element t of ( bstree 0:) to be a binary search tree if ( labels t) is a list in 
increasing order, where: 

labels Nil = [ l  
labels (Bin x t1 t2 ) = labels t1 * [x] * labels t2 

From now on, we shall use the revised definition of binary search trees . The 
revised definition of member is straightforward and is left as an exercise. 

Finite sets can be represented by binary search trees under the abstraction 
function abstr and valid representation predicate valid defined by: 

abstr t = set ( labels t) 
valid t = ordered ( labels t) 

where set is the function that converts a list into a set of its values. The 
operations empty , insert , delete and member on trees are specified by the 
equations : 

abstr empty 
abstr ( insert x t) 
abstr ( delete x t) 
abstr ( member x t) 

= { }  
= ( abstr t) U {x} 
= ( abstr t) \ {x} 
= u( abstr t) 
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The implementation of empty as the empty tree Nil is immediate, and the 
definition of member requires only a minor change to the one given above. 
This leaves us with insert and delete . The implementation of insert can be 
synthesised from its specification and the result is the following definition: 

insert x Nil = Bin x Nil Nil 
insert x (Bin y t1 t2 ) = Bin y ( insert x t1 ) t2 , 

= Bin y t1 t2 , 
= Bin y t1 ( insert x t2 ) ,  

We shall synthesise delete , leaving insert as an exercise. 

9.3 .1  Tree deletion 

if x < y 
if x = y 
if x > y 

In this section we are going to synthesise the following definition of delete : 

delete x Nil = Nil 
delete x (Bin y t1 t2 ) Bin y (delete x t1 ) t2 , if x < y 

= join t1 t2 , if x = y 
= Bin y t1 (delete x t2 ) ,  if x >  y 

join t1 t2 = t2 , if t1 = Nil 
= Bin x t t2 , otherwise 

where ( x ,  t) = split t1 

split (Bin x t1 t2 ) = (x , t1 ) ,  if t2 = Nil 
= (y ,  Bin x t1 t) ,  otherwise 

where (y ,  t) = split t2 

The synthesis is a good illustration of the interaction between program design 
and program proof and, for the interested reader, merits careful attention. 
It is fairly detailed, so some readers may care to skip the rest of the section. 

The specification of delete is: 

abstr (delete x t) = ( abstr t) \ {x}  

where abstr = set · labels. It i s  left as an exercise to  show that any function 
delete satisfying the equation: 

labels (delete x t) = ( labels t) -- [x] 

will also satisfy the original specification. Using this second equation as a 
starting point , we shall now synthesise a constructive definition of delete . 

The synthesis is organised into cases , depending on the value of t .  

Case Nil. Here we have: 

labels ( delete x Nil) = ( labels Nil) -- [x] 
= [ ]  -- [x] 
= [ ] 
= labels Nil 

(spec) 
( labels. 1 )  
( - - . 1 ) 
( labels. 1)  
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Hence a satisfactory definition of (delete x Nil) is to take: 

delete x Nil = Nil 

Case (Bin y t1 t2 ) .  Here we have: 

labels ( delete x (Bin y t1 t2 )) 
= ( labels (Bin y t1 t2 ))  -- [x] (spec) 
= ( labels t1 * [y 1 * labels t2 ) -- [xl ( labels.2) 
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In order to continue with the derivation, we need a lemma about (--) . This 
lemma says that if (xs * [y] * ys) is in increasing order, then: 

(zs * [y] * ys) -- [x] = (xs -- [x])  * [y] * ys, if x < y 
= xs * ys , if x = y 
= xs * [y] * (ys -- [x]) ,  if x >  y 

Proof of this result is left to the reader. 
To return to the derivation, we now need to identify three subcases . 

Subcase x < y. Here we have: 

labels (delete x (Bin y t1 t2 )) 
= ( labels t1 * [y] * labels t2) -- [xl 
= ( labels t1 -- [x]) * [y] * labels t2 
= labels ( delete x t1 ) * [y] * labels t2 
= labels (Bin y ( delete x t1 ) t2 ) 

Hence we can take:  

(lemma) 
(spec) 
( labels.2) 

delete x (Bin y t1 t2 ) = Bin y (delete x t1 ) t2 , if x < y 

Subcase x > y .  This case is similar and we obtain: 

delete x (Bin y t1 t2 ) = Bin y t1 (delete x t2 ) ,  if x >  y 

Subcase x = y .  In this case we get :  

labels ( delete x (Bin y t1  t2))  = labels t1  * labels t2 

In order to make further progress , we now need to invent a second function, 
join say, satisfying: 

labels (join t1 t2 ) = labels t1 * labels t2 

Given join, we can take: 

delete x (Bin y t1 t2 ) = join t1 t2 , if x = y 
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Let us now write down the complete definition of delete : 

delete :z: Nil 
delete :z: (Bin y tl t2 ) 

= Nil 
= Bin y (delete :z: tl ) t2 , 
= join tl t2 , 
= Bin y tl (delete :z: t2 ) ,  

if :z: < y 
if x = y 
if x >  y 

TREES 

The result of the synthesis so far is to replace one problem by another: 
how to define join. We shall give two versions of join. The first is simple but 
unsatisfactory, while the second is more complicated but superior. 

Recall that the specification of join reads: 

labels (join tl t2 ) = labels tl * labels t2 

The first synthesis of (join tl t2 ) proceeds by case analysis on tl . 

Case Nil. We have: 

labels (join Nil t2) = labels Nil * labels t2 (spec) 
= [ ]  * labels t2 ( labels .l) 
= labels t2 

Hence we can define: 
join Nil t2 = t2 

Case (Bin x ul u2) .  Here we get : 

labels (join (Bin :z: ul u2) t2 ) 
= labels (Bin :z: tl t2) * labels t2 
= labels ul * [x] * labels u2 * labels t2 
= labels ul * [:z:] * labels (join u2 t2) 
= labels (Bin :z: ul (join u2 t2))  

Hence we can define: 

(spec) 
( labels.2) 
(spec) 
( labels.2) 

join (Bin :z: ul u2) t2 = Bin x ul (join u2 t2) 

The result of this synthesis is the following definition of join: 

join Nil t2 = t2 
join (Bin :z: ul u2) t2 = Bin :z: ul (join u2 t2) 

While this definition of join is perfectly correct , it is unsatisfactory because 
the depth of the resulting tree can be quite large. In effect , the second tree 
t2 is appended as a new subtree at the bottom right of tl . The result is a 
tree whose depth is the sum of the depths of tl and t2 . As we have seen, the 
efficiency of tree insertion and membership depends critically on the depth 
of the tree and we would like to ensure that , when joining trees , we keep the 
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depth as small as is reasonably possible. Hence we reject this definition of 
join and try and look for a better one. 

The second attempt at a synthesis of join from its specification involves 
the step of rewriting: 

labels t1 * labels t2 = init ( labels t1 ) * [last ( labels t1 )] * ( labels t2 ) 

This step is valid provided labels t1 i' [ ] .  Furthermore, let us introduce the 
functions initree and lastlab satisfying the equations :  

labels ( initree t )  = init ( labels t) 
lastlab t = last ( labels t) 

The case t1 = Nil for the new synthesis of join is the same as before. 
The remaining case is as follows. 

Case t1 i' Nil. We have: 

labels (join t1 t2 ) 
labels t1 * labels t2 

= init ( labels t1 ) * [last ( labels t1 )] * labels t2 
= labels (initree t1 ) * [lastlab t1 ] * labels t2 
= labels (Bin ( lastlab t1 ) (initree t1 ) t2 ) 

Hence we can define: 

join t1 t2 = Bin x u1 t2 , if t1 i' Nil 
w here x = lastlab t1 

u1 = initree t1 

(spec) 
(above) 
(above) 
( labels .2) 

The synthesis of a constructive definition of initree and an efficient version 
of lastlab will be left to the reader. These functions can be combined into a 
function split satisfying: 

split t = ( lastlab t, initree t )  

and the definition of join can be written in  the form: 

join t1 t2 = t2 , if t1 = Nil 
= Bin x t t2 , otherwise 

where (x ,  t) = split t1 

This definition of join is better than the earlier one because, in general, it 
results in a tree with a smaller depth. The situation can be summarised in the 
following way. Suppose a binary search tree t of size n has been constructed 
by a sequence of insertions and deletions of 'random' elements. On average, 
we can expect the depth of t to be 0 (log n) , and so a further insertion or 
deletion will take o (log n) steps. For a proof of this fact , see Knuth [10] . 
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FinaJIy, it is important to bear in mind that join is not a general function 
for joining two arbitrary binary search trees . The specification of (join t1 t2 ) 
entails the condition: 

max (labels t1 ) ::; min ( labels t2 ) 

In fact , there is no simple method for joining two arbitrary trees; the best 
approach is to build the new tree from scratch. It follows that binary search 
trees are not particularly efficient for the implementation of other set opera
tions, such as set union or set difference. If these a

r
e the crucial operations 

in a given application, then a representation of sets by ordered lists is the 
most appropriate. 

Exercises 

9.3.1 Prove that : 

labels t = init ( tips t )  

9.3.2 The function initree , used in the synthesis of binary search tree dele
tion, is specified by the equation: 

labels ( initree t) = init (labels t) 

Synthesise a constructive definition of initree . 

9.3.3 Derive an efficient version of lastlab , where: 

lastlab t = last ( labels t) 

9.3.4 Show that any function delete satisfying the equation: 

labels ( delete x t) = ( labels t) -- [x] 

will satisfy the original specification of delete. 

9.3.5 Synthesise the definition of insert for inserting a new value into a 
binary search tree. Also, synthesise a version of delete which uses the rule 

labels t1 * labels t2 = labels t1 * [hd ( labels t2 )] * tl ( labels t2 ) 

instead of the one given in the text . 
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9.4 Balanced trees 

The tree insertion and deletion operations studied in the last section suffer 
from the disadvantage that they are efficient only on average. Although a 
sequence of insertions and deletions of random elements can be expected to 
produce a tree whose depth is reasonably small in relation to its size, there is 
always the possibility that a very unbalanced tree will emerge. In this section 
we will outline a technique which guarantees that both insertion and deletion 
can be performed in logarithmic time. 

The idea is to impose an extra condition on binary search trees, namely 
that they should be balanced. A binary tree t is said to be (depth-) balanced 
if (depthbal t) holds, where: 

depthbal Nil = 

depthbal (Bin x t1 t2 ) = 

7'rue 
abs ( depth t1 - depth t2) :::; 1 A 
depthbal t1 A depthbal t2 

In words, a balanced tree is a tree with the property that the depth of the 
left and right subtrees of each node differ by at most one. A balanced tree 
may not be minimal, but its depth is always reasonably small in comparison 
to its size. The precise relationship between depth and size in a balanced 
tree is analysed below. 

Let us consider how to rebalance a tree after an insertion or deletion. 
Define the slope of a tree by: 

slope Nil = 0 
slope (Bin x t1 t2 ) = depth t1 - depth t2 

A tree t is therefore balanced if abs (slope s) :::; 1 for every subtree s of t . 
Since a single insertion or deletion can alter the depth of any subtree by at 
most one, rebalancing is needed when slope t = 2 or slope t = -2.  The two 
situations are symmetrical, so we shall study only the case slope t = 2.  

Suppose then that t = Bin x t1 t2 , where t1 and t2 are balanced trees , 
but slope t = 2. There are two cases to consider: 

(i) If the left subtree t1 of t has slope 1 or 0, then t can be rebalanced by a 
simple 'rotation' to the right . This operation is pictured in Figure 9.4, 
where the depths of the various subtrees appear as labels . It can be 
seen from the picture that the rotation operation restores the balance 
of t, without destroying the binary search tree condition. 

(ii) On the other hand, if slope t1 = -1 ,  then we first have to rotate t1 
to the left before rotating t to the right. This initial rotation left is 
pictured in Figure 9.5. 

The various rebalancing operations can be expressed as functions in a 
fairly direct fashion. First , the main function rebal for rebalancing a tree, 
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assuming its subtrees are themselves balanced, is defined by: 

rebal t = shiftr t ,  if slope t = 2 
= shiftl t ,  if slope t = - 2  
= t ,  otherwise 
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The functions shiftr and shiftl are used to distinguish the kinds of rotation 
necessary. The operation shiftr has been described above, and shiftl deals 
with the symmetrical case when the right subtree has become too large. They 
are defined formally as follows: 

shiftr (Bin x tl t2 ) = rotr (Bin x (rotl tl ) t2 ) ,  if slope t l  = -1  
= rotr (Bin x tl t2 ) ,  otherwise 

shiftl (Bin x tl t2 ) = rotl (Bin x tl (rotr t2 )) ,  if slope t2 = 1 
= rotl (Bin x tl t2 ) ,  otherwise 

Finally, the rotations rotr and rotl for rotating a tree to the right or left are 
defined by the equations: 

rotr (Bin x (Bin y tl t2 ) t3) = Bin y tl (Bin x t2 t3 ) 
rotl (Bin x tl (Bin y t2 t3))  = Bin y (Bin x tl  t2 ) t3 

It is left as an exercise for the reader to show formally that : 

and hence that : 

labels ( rotr t) = labels t 
labels ( rotl t )  = labels t 

labels (rebal t) = labels t 
Ignoring the cost of computing slope, a single rebalancing operation can 

be carried out in constant time. Slope calculations can be avoided by storing 
slope values as extra labels in the tree. The rotation functions rotr and 
rotl must then be modified to ensure that the new slope labels are stored 
correctly. We shall leave details as an instructive exercise. 

Now let us see how the definition of insert has to be changed (the modi
fications to delete are similar and are left to the reader) . The new definition 
is: 

insert x Nil = Bin x Nil Nil 
insert x (Bin y tl t2 ) = rebal (Bin y ( insert x t1 ) t2 ) ,  

= Bin y tl t2 , 
= rebal (Bin y tl (insert x t2)) ,  

if x < y 
if x = y 
if x >  y 

Thus rebal is applied to every tree along the path to the newly inserted node. 
In fact, it can be shown that at most one tree actually requires rebalancing as 
a result of an insert operation, but this can occur anywhere along the path. 
Since rebal requires constant time, the cost of computing insert is O (log n) 
steps, where n is the size of the tree. 
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9.4.1 Analysis of depth 

Finally, let us determine the relationship between size and depth in a balanced 
tree. The idea is to construct, for each natural number d, a balanced tree 
of depth d with the minimum possible size. Call this size S( d) . Once we 
know S(d) , we can estimate the depth d in terms of the size n by solving the 
relation S( d) � n. 

Since Nil is the only tree of depth 0, we have S(O) = O. Similarly, the 
only tree of depth 1 is of the form (Bin x Nil Nil) so we have S(1) = 1 . In 
general, it should be clear that the smallest possible balanced tree with depth 
(d + 2) is of the form (Bin x tl t2 ) ,  where one of tl or t2 is a balanced tree 
of depth d + 1 and the other is a balanced tree of depth d. It follows from 
this argument that: 

S(O) 
S(1) 

= 0 
= 1 

S(d + 2) = 1 + S(d) + S(d + 1) 

This definition is similar to that of the Fibonacci function fib. A simple 
induction argument shows that: 

S( d) = fib (d  + 2) - 1 

Furthermore, we know from the discussion of Fibonacci numbers in Chapter 
5 that: 

where: 
¢ = 1 + V5 

and ¢ = 1 - V5 
2 2 

Since I¢I < 1, it follows that : 

Hence, if S (d) � n, we have: 

Equivalently, taking logarithms to base 2, we have: 

Finally, since log", 2 = 1 .4404 . . . it follows that the depth of a balanced tree 
is never more than about 45 per cent worse than the theoretical minimum. 
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Exercises 

9.4.1 Consider the functions rotr and rotl for carrying out rotations on bal
anced trees. Show that : 

and so: 

labels (rotr t) = labels t 
labels (rotl t )  = labels t 

labels (rebal t) = labels t 

9.4.2 Slope calculations in balancing binary search trees can be avoided by 
storing slope values as extra labels in the tree. Give the appropriate type 
definitions and show how to modify the rotation functions rotl and rotr to 
maintain this information. 

9.4.3 Why does at most one tree actually require rebalancing after an insert 
operation on balanced trees? 

9.4.4 Give the definition of delete for deleting a value from a balanced tree. 

9 .4.5 Implement sets using ordered lists ,  binary search trees, and balanced 
binary search trees. Asymptotic analysis tells us that for sufficiently large 
sets, balanced trees will be the best implementation. Experiment to deter
mine for what size of set each representation is most appropriate. 

9 . 5  Arrays 

As a final illustration of the use of binary trees, we shall consider the problem 
of implementing arrays efficiently. Recall from Section 8.5 the abstract type 
( array a)  defined by the following four operations: 

mkarray .. [a] -+ array a 
length .. array a -+ num 
lookup .. array a -+ num � a 
update .. array a -+ num -+ a -+ array a 

An element of (army a) is essentially a finite list whose elements may be 
modified and inspected, but whose length does not change. A representation 
of arrays by finite lists was given in Section 8.5; with this method, the cost of 
each array operation is linear in n, the length of the array. By representing 
arrays as binary trees, we can reduce the cost of each operation to o (log n) 
steps. 

The basic idea is to represent an array by a size-balanced binary tree. A 
tree t is a size-balanced tree if (sizebal t) holds, where: 

sizebal ( Tip x) = True 
sizebal (Bin t1 t2 ) = abs (size t1 - size t2 ) ::; 1 A 

sizebal t1 A sizebal t2 
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The definition of a size-balanced tree is therefore similar to that of a depth
balanced one. Unlike depth-balanced trees, a size-balanced tree is necessarily 
minimal. The proof of this fact is left as an exercise for the reader. 

Building a tree. We shall represent an array (with length greater than 
zero) by a size-balanced tree whose tip values , in left to right order, are the 
array elements .  We therefore require: 

tips (mkarray xs) = xs 

where tips is the function for listing the tip values in left to right order. Given 
that we want mkarray to return a size-balanced tree, the following definition 
should be straightforward: 

mkarray xs = Tip (hd xs) ,  
= Bin (mkarray ys) (mkarray Z8) , 

where n = #xs 
ys = take (n div 2) xs 
zs = drop (n div 2) xs 

if n = 1 
if n >  1 

Since (n  div 2) and (n - n div 2) differ by at most 1, it should be clear that 
mkarray returns a size-balanced tree. The time T(n) required by mkarray to 
build a tree of size n is the sum of the time needed to split the list , which is 
O( n) steps,  and the time to construct two subtrees, which is approximately 
2T(n/2) steps. Hence T satisfies the recurrence equation: 

T(n) = 2T(n/2) + O (n) 

for n > 1 ,  and so: 
T(n) = O(n log n) 

It follows that it takes 0 (n log n) steps to build a size-balanced tree by 
mkarray. This time can be reduced to O(n) steps (see Exercise 9.5 .4) . 

Accessing the tips . To implement lookup, we use information about tree 
sizes to control the search. The formal definition of lookup can be synthesised 
from the equation: 

lookup t k = ( tips t) ! k 

and is given by: 

lookup ( Tip x) 0 = x 
lookup (Bin t1 t2 ) k = lookup t1 k ,  if k < m 

= lookup t2 (k - m), otherwise 
where m = size t1 

The essential point here is that if k is less than m, the size of the left subtree 
t1 of t, then the tip at position k will be found at the same position in t1 . If, 
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on the other hand, k ;::: m, then the kth tip will be the tip at position (k - m) 
in the right subtree. Ignoring the cost of computing size for the moment , it 
follows that retrieving the kth tip will require 0 (log n) steps whenever t is a 
minimal tree of size n. 

. 

The way to avoid costly recomputations of size is, once again, to use 
labelled binary trees. Each tree is labelled with the size of its left subtree. 
The necessary modification to mkarray is straightforward: 

mkarray 
mkarray xs 

[0] -+ lbtree 0 num 
= Tip x ,  

Bin m (mkarray ys) (mkarray zs) ,  
where n = #xs 

m = n div 2 
ys = take m xs 
zs = drop m xs 

We can now rewrite the definition of lookup as: 

lookup ( Tip x )  0 = x 

if n = 1 
if n >  1 

lookup (Bin m tl t2 ) k = lookup tl k ,  if k < m 
= lookup t2 (k - m), otherwise 

With the new definition, the time required to compute lookup is o (log n) 
steps. Notice that the price paid for this improvement is the extra space 
needed to store information about tree sizes . 

The definition of update is equally simple: 

update ( Tip y) 0 x = Tip x 
update (Bin m tl t2 ) k x 

= Bin m (update tl k x)  t2 , if k < m 
= Bin m tl (update t2 (k - m) x) ,  otherwise 

Observe that if k does not lie in the range 0 :5; k < sizet ,  then update tkx = 1..  
Finally, to  complete the repertoire of array operations , the function length 

for determining the number of elements in the array is defined by: 

length ( Tip x) = 1 
length (Bin m tl t2 ) = m + length t2 

Here, length is the same function as size . 
The reason we can successfully represent arrays by size-balanced trees is 

that the trees do not change shape, so rebalancing is never required. Re
balancing a tree to restore the size condition is more time consuming than 
rebalancing to restore the depth condition. 
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Exercises 

9.5 .1  Show that a size-balanced tree is minimal. 

9.5 .2 Prove that lookup satisfies its specification, i.e: 

lookup t k = ( tips t) ! k 

9.5 .3 Prove that mkarray returns a size-balanced tree. 

9.5 .4 Generalise mkarray to a function mkarray2 satisfying: 

mkarray2 n zs = (mkarray ( take n zs) ,  drop n zs) 

Using this equation as a starting point , synthesise the following new definition 
of mkarray2 : 

mkarray2 n zs = ( Tip (hd zs) ,  tl zs) , if n = 1 
= (Bin t1 t2 , zs), if n >  1 

where ( t1 ,  ys) = mkarray2 m zs 
( t2 , zs) = mkarray2 (n  - m) ys 
m = n div 2 

Write down the recurrence relation for T( n) , the time required to evaluate 
(mkarray2 n zs) ,  and hence show that the new definition leads to a more 
efficient computation. 

9.5 .5 Suppose t is the minimal binary tree of size 2n . Define a function 
( binary n) so that : 

lookup t k = trace t ( binary n k) 

where trace was defined in Section 9.2 This idea leads to an alternative 
method for efficient list indexing. Extend a list zs with as many 1. values 
as necessary to ensure that its length is a power of two. Build the minimal 
binary tree from the new list, and use the above definition of lookup. Does 
this method use more or less space than the labelled tree approach? 

9.5 .6 Write functions similar to mkarray for building a labelled binary tree 
in which (i) the label of a tree is the maximum tip value; (ii) the label of a 
tree is its depth. 

9.5.7 Construct suitable definitions of mktree and revtree so that : 

reverse = tips . revtree . mktree 

Estimate the time-complexity of this version of list reversal. 
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9 .5 .8 Repeat Exercise 9.4.5 by implementing arrays by lists ,  binary search 
trees , depth balanced binary search trees, and size balanced trees . Exper
iment to determine for what length of array each representation is most 
appropriate. 

9 .5 .9 What other common list-processing functions are made more efficient 
by representing lists as binary trees? 

9 . 6  General trees 

Now let us turn to trees with a multiway branching structure. Consider the 
type declaration: 

gtree a : : =  Node a [gtree a] 

An element of (gtree a) thus consists of a labelled node together with a list 
of subtrees . For example, (Node 0 [ ] )  is an element of (gtree num), and so is: 

Node 0 [Node 1 [ ] , Node 2 [ ] ,  Node 3 [ ]] 

It is even possible to have trees with an infinite number of immediate subtrees; 
for example: 

Node 0 [Node n [ ]  I n +- [1 . .  ]] 

is also an element of (gtree num).  A tree t is said to be finitary if every node 
of t has a finite number of immediate subtrees ; in other words , if ts is a finite 
list in every subexpression (Node x ts) of t. The above tree is therefore not 
finitary. 

The notions of size and depth extend to general trees: 

size (Node x ts) 
depth (Node x ts) 

= 1 + sum (map size ts) 
= 0, if ts = [ ]  
= 1 + max (map depth ts) ,  otherwise 

A tree is finite if it has a well-defined size. Note that a tree can be finitary 
without being finite. Unlike the case of binary trees, the size of a general 
tree can be arbitrarily larger than its depth. 

General trees have numerous applications and arise naturally whenever a 
hierarchical classification is discussed. For example, this book is organised as 
a tree structure as the method for numbering chapters and sections shows. 
The departmental structure of many large organisations is also usually ex
pressed as a tree. We shall consider one application of general trees below, 
and another in the next section. 
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9.6.1 Expression t rees 

We implicitly describe a tree structure whenever we write down a bracketed 
expression. Consider, for example , the expression : 

J (g (x , y) , z , h (u))  

This expression can be represented by the general tree: 

Node J [Node 9 [Node x [ ] ,  Node y [ ]] ,  Node z [ ] ,  Node h [Node u [ ] ]] 

It is easy to see that every expressi<...:l can be written as a tree in this way. 
In particular, the representation of: 

is a tree: 
Node J [tb � , " " tn] 

where tj is the representation of ej . Conversely, every (finite) tree can be 
written as a linear expression involving label values , brackets and commas . 

Functional programmers often prefer to curry their expressions , and the 
above example can also be written in the ,  by now familiar, following form: 

J (g x y) z (h u) 

This expression can be represented by the binary tree pictured in Figure 9.6 .  
The rule here is that an application (el e2 ) is represented by a tree (Bin tl t2 ) ,  
where tj is the representation of ej , and a constant x is represented by ( Tipx) . 
Conversely, every finite binary tree can be represented in the form of a curried 
expression. Since general expressions and curried expressions are intercon
vertible, it must be the case that each (finite) general tree can be translated 
into a unique binary tree, and vice versa. So, let us construct functions that 
implement this translation. 

We can convert an element of (gtreeo:) into an element of ( btreeo:), where: 

btree 0: : : =  Tip 0: I Bin ( btree 0:) ( btree 0:) 

by applying a function curry : :  gtree 0: --+ btree 0: defined by: 

curry (Node x ts) = Joldl Bin ( Tip x ) (map curry ts) 

In words , to convert a general tree we convert all its subtrees, and then 
combine them into a binary tree whose structure follows the left association 
order of application. For example: 

curry (Node x [ ] )  = Joldl Bin ( Tip x ) ( map curry [ ]) 
= Joldl Bin ( Tip x)  [ ]  
= Tip x 
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and: 

Figure 9 .6 A curried expression . 

curry (Node f [t1 , t2] )  
= foldl Bin ( Tip f) (map curry [t1 , t2] )  
= foldl Bin ( Tip f) [curry t1 , curry t2] 
= foldl Bin (Bin ( Tip f) (curry t1 )) [curry t2] 
= Bin (Bin ( Tip f) ( curry t1 )) ( curry t2) 

263 

It is left as an exercise for the reader to show that ( curry t) returns a well
defined binary tree if t is a finitary tree; however, the correspondence breaks 
down if t is non-finitary. 

Let us now construct the inverse correspondence: 

uncurry :: btree a -+ gtree a 

We are going to synthesise uncurry from the specification: 

uncurry ( curry t) = t 

for all (finitary) general trees t .  The synthesis is by cases . 

Case ( Tip x) .  To synthesize a value for uncurry ( Tip x) ,  we reason that : 

Hence: 

Tip x = foldl Bin ( Tip x ) [ ]  (foldl.1) 
= foldl Bin ( Tip x ) (map curry [ ] ) (map.1) 
= curry (Node x [ ] )  (curry .1)  

uncurry ( Tip x )  = uncurry (curry (Node x [ ] )  
= Node x [ ]  (spec.) 
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Case (Bin b1 b2) .  To construct a value for uncurry (Bin b1 b2) ,  we suppose 
that: 

b1 = curry (Node x ts) 
b2 = curry t 

( b1 .1) 
( b2 .1 ) 

It follows from the first equation and the definition of curry that : 

b1 = foldl Bin ( Tip x ) (map curry ts) ( b1 .2) 

We also need the law: 

Joldl (EEl) (foldl (EEl) a xs) ys = Joldl (EEl) a (xs * ys ) (law) 

Now we reason: 

Bin b1 b2 
= foldl Bin b1 [b2] 
= Joldl Bin (foldl Bin ( Tip x ) (map curry ts)) [b2] 
= Joldl Bin ( Tip x )  (map curry ts * [b2]) 
= Joldl Bin ( Tip x ) (map curry ts * [curry t]) 
= Joldl Bin ( Tip x )  (map curry ( ts * [t] ) )  
= curry (Node x (ts * [t] )) 

Hence we have: 

(foldl .1 ,Joldl.2) 
( b1 .2) 
(law) 
( b2 . 1 )  
(map , *) 
( curry .1) 

uncurry (Bin b1 b2 ) = uncurry (curry (Node (ts * [t]))) 
= Node x ( ts * [tD (spec.) 

We have therefore shown that: 

uncurry ( Tip x) = Node x [ ]  
uncurry (Bin b1 b2) = Node x ( ts * [t] ) 

where Node x ts 
t 

= uncurry b1 
= uncurry b2 

It is possible to improve the efficiency of uncurryj details are left as an 
exercise. 

9.6.2 Example: pattern matching 

Let us now consider an important application that exploits the representation 
of expressions by general trees . Informally, a pattern matcher is a program 
that tests whether some given expression e, called the target, fits a specified 
expression p, called the pattern. For instance, suppose the pattern is the 
expression: 

(x ,  [y] ) 

where x and y denote variables. This pattern matches the target : 

(3, [ 7hte]) 
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under the substitution {x -+ 3, y -+ True} in which x is replaced by 3 and y 
by True. However, the same pattern does not match the target : 

(3 , ( True , Nil) )  

because pairs and lists are not comparable. More precisely, the constructor 
( , ) for pairs is distinct from the constructor ( : ) for lists. As another example, 
consider the pattern: 

(x ,  [xl )  

This pattern matches the target (3, [3D, but does not match (3, [TrueD since 
3 and True are non-equal constants .  

Given a pattern p composed of constructors and variables, and a target 
expression e composed of constructors only, we want to define a function 
match so that (match p e) is the substitution, if it exists , under which p 
matches e . 

The first job is to specify the problem more precisely, and for this we need 
to give a formal definition of the class of expressions. We take: 

where: 

exp : := Var var I Con con [exp] 

var = = string 
con = = string 

The only difference between exp and the form of a general tree introduced 
above is the presence of the additional 'tip ' nodes ( Var var) for representing 
variables . For example, the pattern (0, [yD can be expressed as the following 
element of exp: 

Con "Pair" [Con "0" [ ] , Con "Cons" [ Var "y" , Con "Nil" [ ll l 

Here, (Pair x y )  corresponds to (x, y), and (Cons x xs) to x : xs . Note that 
the constants 0 and Nil are represented as constructors of no arguments .  We 
assume that each constructor c is associated with a fixed number, arity c ,  of 
arguments ,  so that ( Con c es) is only well-formed if #es = arity c. 

By definition, a pattern is an arbitrary element of exp, while a constant 
expression is an element of exp that does not contain variables .  For conve
nience, we introduce the type synonyms: 

pattern exp 
conexp -- exp 

Substitutions. Next we need to formalise the notion of a substitution. In 
general, a substitution is a function that maps variables to expressions: 

subst = = var -+ exp 
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However, the substitutions that arise in pattern matching satisfy an impor
tant restriction: they return constant expressions only. In other words , if 
substitution s is defined for a variable x ,  then (s  x) is a constant expression. 
It is convenient to consider substitutions as total functions , so we shall allow 
the exception s x = Var x to the above rule, if no other value for x is defined. 

Since we want to set up the algebra of substitutions in a particular way, 
we shall describe them as an abstract data type. This means we can postpone 
committing ourselves to a particular representation of substitutions , whether 
as functions or in some other way. 

The abstract type subst has five basic operations: 

(*) . .  subst ---T var ---T exp 
iden . .  subst 
unit . .  var ---T exp ---T subst 
(ffi ) . .  subst ---T subst '---T subst 

dom . .  subst ---T set var 

The operation (*) corresponds to functional application under the interpre
tation of substitutions as functions: if s is a substitution and x an element 
of var, then s * x  is the expression to be substituted for x .  Using (*) we can 
define the result of applying a substitution to an arbitrary pattern: 

apply subst ---T pattern ---T exp 
apply s ( Var x) = s * x  
apply s ( Con c ps) = Con c (map (apply s) ps) 

The substitution iden (short for 'identity') maps every variable x to the 
expression ( Var x) ;  thus: 

iden * x  = Var x 

for all x in var . In particular, we have: 

apply iden e = e 

for all expressions e .  
The substitution ( unit x e) has the property that: 

(unit x e )  * y = e, if x = y 
= Var y, otherwise 

Thus, the function apply (unit x e) takes an expression and replaces every 
occurrence of ( Var x)  by e , but leaves other variables unchanged. 

The function dom returns the 'essential' variables of a substitution . It is 
defined abstractly by the equation: 

dom s = {x I s * :c  :f Var :c} 
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In particular: 

dom iden = { }  
dom ( unit :c e) { :c }, (if e ::f Var :c ) 

The function dom is needed below. 
Finally, the operation (EEl) combines two substitutions. This is a partial 

operation which is defined only if the substitutions are compatible. Two 
substitutions are compatible if they return the same results on all essential 
variables . We define : 

compatible 81 82 = all {81 * :c  = 82 * :c  I :c e dom 81 n dom 82 } 

For example, (unit :c e1 ) and (unit :c e2 ) are compatible if e1 = e2 . Note 
that iden is compatible with all substitutions since its dom value is empty. 

If 81 and 82 are compatible, then we define: 

It follows that : 

(81 EEl 82 ) * :c  = 81 * x , if x e dom 81 
= 82 * x ,  if x e dom 82 
= Var x ,  otherwise 

81 EEl 82 = 82 EEl 81 

for all compatible 81 and 82 . 
The algebra of substitutions under EEl is similar to the algebra of sets 

under U.  In particular: 

81 EEl iden = 

81 EEl 82 = 

81 EEl 81 = 

81 EEl (82 EEl 83) = 

81 
82 EEl 81 
81 
(81 EEl 82 ) EEl 83 

(identity) 
(commutativity) 
(idempotency) 
( associativi ty ) 

However, unlike U ,  the operation EEl is partial; for example, the associative 
law only holds if 81 , 82 and 83 are pairwise compatible because only in this 
case is either side defined. 

Since it is inconvenient to work with partial algebras, let us turn EEl into a 
total operation. The way to do this is to 'lift ' the class of substitutions by in
cluding an extra element , called Fail, to denote the inconsistent substitution. 
In general, we can define the type: 

lift a : := Fail I Ok a 

for lifting a type a by including one extra element. We then have: 

lsub8t == lift 8ub8t 

where 8ub8t is the type that represents substitutions. 
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We can now define the lifted version ® of ffi by: 

Fail ® as 
(Ok s) ® Fail 
( Ok s1 ) ® ( Ok s2 ) 

= Fail 
Fail 

= Ok (s1 ffi s2 ), 
Fail, 

if compatible s1 s2 
otherwise 

TREES 

It is left to the reader to check that ® is an associative, commutative and 
idempotent operation, with identity element ( Ok iden) and zero element Fail. 

The pattern matcher. We have now erected enough machinery both to 
specify the function match and to implement it. Given finite elements p and 
e of exp, where e does not contain variables and neither p nor e contain 1., 
the value of ( match p e) is an augmented substitution as such that either: 

1. as = Ok s and apply s p = ej or 

2. as = Fail and apply s p # e for all s. 

The most straightforward implementation of match is as follows :  

match :: pattern -+ conexp -+ lsubst 
match ( Var x ) e = Ok (unit x e) 
match (Con c ps) ( Con d es) 

= combine (zipwith match ps es) ,  if c = d 
= Fail, otherwise 

combine = foldr ( ®) ( Ok iden) 

The function zipwith is defined by: 

zipwith f xs ys = fJ x y l (x , y) r.- zip (xs , ys)] 

Since ® and (Ok iden) form a monoid, we could also define combine by: 

combine = foldl (®) ( Ok iden) 

The definition of match can be explained as follows. If the pattern con
sists of a single variable x ,  then the match succeeds with the unit substitution 
{x -+ e} ,  where e is the target . Otherwise, if the pattern and target begin 
with the same constructor, then corresponding subexpressions are matched, 
and the resulting substitutions are combined. If any two of these resulting 
substitutions are incompatible, or if the pattern and target begin with differ
ent constructors, then the result is failure. We shall leave the proof that the 
implementation of match meets its specification as an instructive exercise. 

Although the given definition of match is reasonably simple, it does not 
lead to the most efficient algorithm. Testing two substitutions for compati
blity involves computing intersections of the dom values of substitutions. A 
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superior algorithm can be based on the idea of testing s1 and s2 for compat
ibility only when one of them is a unit substitution. Consider the function: 

match1 .. lsubst -+ (pattern, exp) -+ lsubst 
match1 as (p, e ) = as (8) match p e 

Since ( Ok iden) is the identity element of (8),  we have: 

match p e = match1 ( Ok iden) (p , e) 

and so match can be defined in terms of match1 . Starting with the given 
definition of match1 , it is possible to derive the following alternative defini
tion: 

match1 Fail (p, e) = Fail 
match1 ( Ok s) ( Var x ,  e) 

= Ok ( extend s x  e) , if s * x = Var x 
= Ok s ,  if s * x = e  
= Fail, otherwise 

match1 ( Ok s) ( Con c ps ,  Con d es) 
= foldl match1 ( Ok s) (zip ps es) ,  if c = d 
= Fail, otherwise 

The subsidiary function extend satisfies: 

( extend s x e) * y = e, if x = y 
= s * y, otherwise 

We shall leave the pleasure of synthesising the above definition to the reader. 
The revised definition of match, in terms of match1 , has one very useful fea
ture: apart from iden, the only abstract operation on substitutions appearing 
in the definition is *! Since we no longer have to compute dom values, we 
can implement substitutions directly as functions. Specifically, we take: 

subst == var -+ exp 

replace * by functional application, and define: 

iden x = Var x 

Exercises 

9 . 6 . 1  Give a definition of mapgtree that is the analogue of map for general 
trees . 

9 . 6 . 2  Show that: 
uncurry (curry t) = t 

for all finitary trees t. Give an example of a non-finitary tree for which the 
above equation fails to hold. 
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9.6.3 Define a function loldlgtree that is the analogue of loldl on general 
trees , and show that : 

loldlgtree (€a) = foldbtree (€a) . curry 

9.6.4 Consider the synthesis of uncurry from curry . Suppose we look for a 

constructive definition of uncurry of the form: 

uncurry = loldbtree (ffi ) . mapbtree I 

Calculate the functions E!l and I .  

9.6.5 Define the function curry1 by: 

. .  gtree a -+ btree a -+ gtree a 

= Node z (fs * ts) 
where Node x is = uncurry b 

Express uncurry in terms of curry1 . Synthesise an alternative definition of 
curry1 , and estimate the potential gains in efficiency. 

9.6.6 Consider the abstract data type of substitutions. Show that E!l is asso
ciative, commutative and idempotent . Show that iden is the identity element 
of ffi .  Similarly, show that ® is associative, commutative and idempotent, 
with identity element ( Ok iden) and zero element Fail. 

9.6.7 Show that substitutions s and (unit z e) (where e =F Var x ) are com
patible just in the case that: 

Hence show that , if s and (unit z e) are compatible, then: 

(s ffi unit z e) * y  = e, if z = y 
= Var y, otherwise 

9.6.8 Prove that , if s1 and s2 are compatible, then: 

s1 E!l s2 = ( apply s1 ) · (s2*) 

9.6.9 Prove that the pattern matching function match meets its specifica
tion. 

9.6.10 Synthesise the alternative definition of .match1 .  
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9 . 7  Game trees 

An interesting application of general trees is to the problem of programming 
a two-person game like Chess or Tic-Tac-Toe. Such games are defined by a 
set of values, called positions, and a function move that determines for each 
possible position the set of new positions that can arise. Starting from a given 
initial position, two players move alternately until some position is reached in 
which no further moves are possible. Depending on the rules, the game either 
ends in a draw or one player is designated the winner. Usually the winner is 
the player who makes the last legal move. At each step of the game, players 
will attempt to choose the move that maximises their chances of winning. 
This is the situation we are going to model as a functional program. 

Suppose we are given some type position and a function: 

moves :: position -+ [position] 

for computing new positions. We can study the progression of a game by 
representing it as a tree . The nodes of the tree are labelled with positions , 
so we introduce the type: 

gtree : := Node position [gtree] 

We can build a game tree from a given position by: 

gametree 
gametree p 
reptree / x 

.. position -+ gtree 
= reptree moves p 
= Node x (map (reptree f) (J x)) 

In practice, the tree (gametreep) will often be very large and, for some games , 
it may actually be infinite. A tree can be pruned to a fixed depth by the 
function prune defined by: 

prune 0 (Node x ts) 
prune (n + 1) (Node x ts) 

= Node x [ ]  
= Node x (map (prune n) ts) 

Applying (prune n) to a tree will therefore cut off all nodes further than n 
steps away from the root . Note the similarity between prune and take. 

In order to select a move in a given position, an intelligent player will look 
ahead a certain amount to see whether the game will develop favourably or 
unfavourably as a consequence of the move. Except for trivial games, it is not 
feasible to explore the complete tree when analysing positions , so the player 
will first prune the tree to some fixed depth. After pruning, the player makes 
a rough estimate, called static evaluation, of the possible end positions . The 
result of static evaluation of a position p is a numerical measure of the worth 
of p. We shall suppose that the description of a position contains information 
about whose turn it is to move and that the worth of a position is always as 
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it appears to the moving player. We also suppose that if a position is worth 
w to one player, then it is worth (- w) to the other player. Such games 
are called zero-sum games because the sum of the worths to each player of 
any position is always zero; in particular, when one player wins, the other 
player loses . Having computed static estimates, a player will then choose a 
move which leads to the best possible end position, bearing in mind that the 
opposing player will try and do the same. 

Here is a simple example. The tree in Figure 9.7 represents a game tree 
that has been pruned to a depth two by one of the players, say player A, in an 
attempt to find the best move. The tips of this tree are labelled with the static 
estimates of the end positions as a measure of worth to player A (because it 
is As turn to move in these positions) . The best of these has value 65. If, 
however, player A chooses the move that leads to this position, then player 
B will counter by choosing the move that leads to the position with worth 
(-40) . In fact , the best that A can do is to arrive at the position with worth 
20. This value is called the minimax value of the tree. In Figure 9 .7 ,  internal 
nodes of the tree are labelled with their minimax values. These values can be 
calculated in the following way. If position p has next positions PI , P2 , . . .  , Pn 
with worths 'WJ. , � ,  . . .  , wn , then the minimax value of p is given: by 

or, equivalently, by: 

(Remember, the worth of a position is always calculated as it appears to 
the player to move in the position.) Assuming that trees are labelled with 
numerical estimates of positions, rather than the positions themselves, we 
can define minimax by: 

minimax (Node x ts) = x ,  if ts = [ ]  
= -min (map minimax ts) , otherwise 

Notice that only the numerical estimates attached to end positions are used 
by minimax . 

To compute the minimax value of a position, we define: 

dynamic n = minimax · mapgtree static · prune n . game tree 

The function (dynamic n) takes a position, generates a game tree, prunes 
the tree to a given depth n, converts the tree into a tree of static estimates 
(with the help of some given function static :: position -+ num), and finally 
computes its minimax value. Although static is applied to every position 
of the tree, and not just terminal positions, only the static estimates of 
terminal positions are needed. Under lazy evaluation, the static estimates of 
non-terminal positions will never be computed. 
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Figure 9.7 A game tree. 

We have shown how to calculate the minimax value of a position p, but 
not how to use it to select a move. Clearly, the required move is one which 
leads to a position with value (-tl) ,  where tI is the minimax value of p. The 
problem is to avoid computing minimax values twice. One solution is to use 
additional labels to remember position values. We shall leave details as an 
exercise. 

9.7.1 The alpha-beta algorithm 

When exploring large game trees it is important to do as little work as possi
ble. In this respect , the given method for computing minimax is not optimal. 
Consider the tree in Figure 9.8. The tips marked '7 represent positions whose 
static values are not known. This means that y is not known either. How
ever, we do know that y � 30 and this information is sufficient to determine 
x :  

x = - min [20, y] = -20 

Putting it another way, the minimax value of the left subtree puts an upper 
bound on the usefulness of calculating y exactly. Once it is established that 
the value of y must exceed this bound, even if y is not known exactly, further 
calculation of y can be abandoned. Since exploration of the tree below y 
only serves to give lower bounds to y, we can therefore stop computing y 
whenever the two bounds cross. 

This idea leads to an improvement, called alpha-beta pruning, on the 
minimaxing procedure. The key to the optimisation is to consider a bounded 
version, bmx say, of the function minimax . We specify bmx by the equation: 

bmx a b t = a max (minimax t) min b 

where a and b are numbers (the 'alpha' and 'beta' values) such that a � b . 
Since: 

(a max x)  min b = a max (x min b) 
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Figure 9.8 :A.n  incomplete tree. 

whenever a �. b, bra.clcets can be omitted from the right-hand expression 
without fea,r of ambiguity. - . 

The function bmz can be used to compute minimaz provided . so�e con
stant m > 0 is given such that� 

-m � static p � m 

for all positions p. We then have: 

minimaz t == bmil: (�m) m t 

Although the specification of bm:z: refers to the value (minimaz t), this value 
is not required to determine bmz when a = b. We have: 

bmz a a t = a 

and so evaluation of (minima:z: t) is not required. This is the basis of alpha
beta pruning. Put simply, the Qoun<ied evaluation of a tree is carried out 
sequentially in some order, and th� estimates . a and b a,re improved as eval
uation unfolds. If and when the bounds coincide, the minimax value can be 
returned without exploring a.riy nlOre of the tree. 

As a final exercise in program synthesis ,  let us now derive an alternative 
definition of bm:z: that implements the alpha-beta algorithm. We sta,rt with 
the specification: 

. 

bmz a b (Node :z: ts) = a max (minimaz (Node :z: ts» min b 

where a � b and consider two cases. (For brevity, we write mmz for 
minimaz .) 

Case ts = [ ] .  Here we have: 

bmz a b (Node :z: [ ] ) 
= a max (mm:z: (Node :z: [ ] )  min b 
= a max :z: min b 

(spec.) 
(minimaz .l) 
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Case ts =I [ ] .  Here we have: 

bmz a b (Node x ts) 
= a max (mmz (Node x ts» min b (spec.) 
= a max (-min (map mmx ts» min b (minimax .!) 

In order to proceed, we introduce a new function · cmx , satisfying: 

cmz a b ts = a max (-min (map mmz ts» min b 

where a � b. We can now write: 

bmz a b (Node x ts) = cmz a b ts, if ts =I [ ]  
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The remaining steps are directed towards obtaining a recursive definition 
of cmz that does not involve · mmz . There are two cases to consider, depend
ing on whether ts = [ ]  or not . For the second, we shall need the following 
law of negation: 

-(z min y) = (-x) max (-y) 

Case [ ] .  Here we have: 

cmx a b [ ] 
= a max (-min (map mmz [ ] )  min b 
= a max (-min [ ] ) min b 
= a max ( - 00 ) min b 
= a 

Case (t : ts) . Here we have: 

cmz a b  (t : ts) 

(spec:cmz) 
(map.l) 

= a max ( -min (map mmz (t : ts))) min b (spec: cmx) 
= a max (-«mmx t) min (min (map mmx ts»))) min b 

using laws of map and min. To improve readability, let us introducei the 
abbreviations :  

x = mmz t 
y = min (map mmx ·ts) · 

so the last expression is: 

a max (- (x min y» min b 
= a max « -x) max (-y» min b 
= (a max (-x) max (-y» min b 
= (a max (-x) min b) max (-y) min b 

(negation) 
(assoc:max) 

using the distributive laws of max and min. Expanding out the abbrevia
tions x and y ,  the last expression is just (cmx a' b ts) , where: 

a' = a max (-mmx t) min b 
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Finally, by applying negation twice we obtain: 

a' = a max (- mmz t) min b 
= -«-a) min (mmz t) max (-b» 
= - bmz (-b) ( -a) t 

We have therefore obtained that: 

cmz a b [ ] = a 
cmz a b ( t : ts) = cmz a'. b ts 

where a' = -,- bmz (- b)( ""':a) t 

As a final step, we make use of the fact that: 

cmz a a ts = a 

and so, when the bounds a and b are equal, further exploration of ts is 
unnecessary. The right-hand side of the definition of cmz is changed to read: 

cmz a b (t : ts) = a', if a' = b 
= cmx a' b ts , otherwise 

where a' = - bmz (- b) (-a) t 

Let us conclude by writing out the complete definition of bmz : 

bmz a b (Node z ts) = a max z min b, 
= cmz a b ts, 

if ts = [] 
otherwise 

cmz a b [ ] 
cmz a b (t : ts) 

Exercises 

= a 
= a', if a' = b 
= cmz a' b ts, otherwise 

where a' = - bmz (- b) (-a) t 

9.1.1 IT prune is analogous to take, suggest a function analogous to drop. 

9.1.2 Design a. function that takes a positive integer n and a game tree gt, 
and returns a game tree ngt such that (i) ngt is a subtree of gtj (ii) ngt 
contains the position estimated by (dynamic n) to be the best end position 
achievable. 

9.1.3 Design a. program to play Noughts and Crosses (also called Tic-The" 
Toe). Make the program interactive. 
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The AS CII Character Set 

The table on the following page gives the numerical codes of the characters 
in the ASCII character set . The primitive function: 

code :: char -+ num 

converts a character to its ASCII code number (in the range 0 to 127) , and: 

decode : :  num -+ char 

does the reverse. In particular, the newline charact�r '1.' in strings has code 
10, and the space character 'u' has code 32. 
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0 NUL 32 SP 64 @ 96 , 
1 SOH 33 65 A 97 a 
2 STX 34 » 66 B 98 b 
3 ETX ,35 # 67 C 99 c 

4 EOT 36 $ 68 D 100 d 
5 ENQ 37 % 69 E 101 e 
6 ACK 38 & 70 F 102 f 
7 BEL 39 , 71 G 103 g 
8 BS 40 ( 72 H 104 h 
9 HT 41 ) 73 I 105 i 

10 LF 42 * 74 J 106 j 
11 VT 43 + 75 K 107 k 
12 FF 44 76 L 108 1 
13 CR 45 - 77 M 109 m 
14 SO 46 78 N 110 n 
15 SI 47 / 79 0 111 0 
16 DLE 48 0 80 P 112 p . 
17 DC1 49 1 81 Q 113 q 
18 DC2 50 2 82 R 114 r 
19 DC3 51 3 83 S 115 s 
20 DC4 52 4 84 T 116 t 
21 NAK 53 5 85 U 117 u 
22 SYN 54 6 86 V 1 18 v 
23 ETB 55 7 87 W 119 w 
24 CAN 56 8 88 X 120 x 
25 EM 57 9 89 Y 121 Y 
26 SUB 58 90 Z 122 z 
27 ESC 59 91 [ 123 { 
28 FS 60 < 92 \ 124 I 
29 GS 61 = 93 ] 125 } 
30 RS 62 > 94 . 

126 
-

31 US 63 ? 95 - 127 DEL 
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Some Standard Functions 

Below, arranged in alphabetical order, is a summary of the most commonly 
used functions, together with their definitions. 

. 

1 .  and. Returns the logical conjunction of a list of booleans: 

and . .  [boolJ --+ bool 
and = foldr (1\) 7hLe 

2 .  (*). Concatenates two lists: 

(*) . .  [aJ --+ [aJ --+ [aJ 
[ ]  * ys = ys 
(x : xs) * ys = x :  (xs * ys) 

3. concat . Concatenates a list of lists: 

concat . . [[aJJ --+ [a] 
concat = foldr ( * ) [J 

4. const. Creates a constant-valued function: 

const .. a --+ (3 --+ a 
const k x  = k 

5. drop. Selects a final segment of a list: 

drop . .  num --+ [a] --+ [a] 
drop 0 xs = xs 
drop (n + 1) [ ] = [ ]  
drop (n  + 1) (x : xs) = drop n xs 
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6. dropwhile. Removes the longest initial segment of a list all of whose ele
ments satisfy a given predicate: 

dropwhile . . (a -+ bool) -+ [a] -+ [a] 
dropwhile p [ ]  = [] 
dropwhile p (x : xs) = dropwhile p xs, 

= x :  xs , 

7. filter. Filters a list with a predicate: 

filter . . (a -+ bool) -+ [a] -+ [a] 
filter p [ ]  = [ ]  
filter p (x : xs) = x :  filter p xs ,  

= filter p xs, 

8. loldl. Fold-left : 

if p x  
otherwise 

if p x 
otherwise 

loldl . .  (a -+ (3 -+ a) -+ a -+ [(3] -+ a 

= a foldl f a  [ ]  
loldl l a (x : xs)  = strict (foldl f) (f a x  ) xs 

9. foldl1 . Fold-left over non-empty lists :  

loldl1 .. (a -+ a -+ a) -+ [a] -+ a 

foldl1 f (x : xs) = foldl l x xs 

10. foldr. Fold-right: 

loldr .. (a -+ (3 -+ (3) -+ (3 -+ [a] -+ (3 
loldr I a [ ]  = a 
loldr I a (x : xs) = I x (foldr I a xs) 

11 .  loldr1 . Fold-right over non-empty lists : 

foldr1 . .  (a -+ a -+ a) -+ [a] -+ a 

foldr1 I [x] = x 
loldr1 I (x : y : xs) = I x (foldr1 I (y : xs» 

12. 1st .  Selects the first component of a pair: 

1st . . (a , (3) -+ a 

1st (x , y) = x 

13. hd. Returns the first element of a non-empty list : 

hd . . [a] -+ a 

hd (x : xs) = x 



14. ill . The identity function: 

id . . a -+ a 
id x = x 

15. init. Returns a list without its last element: 

init 
init (x :  xs) 

. .  [a] -+ [a] 
= ( ] ,  
= z :  init xs ,  

if zs = ( ]  
otherwise 
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16. iterate. Produces an infinite list of iterated applications of a function to 
a value: 

iterate 
iterate ! x 

. .  (a -+ a) -+ a -+ [a] 
= x :  iterate ! (J x) 

17. last. Returns the last element of a non-empty list: 

last . . [a] -+ a 
last (x : zs) = x ,  

= last zs, 

18. (#) .  Returns the length of a list : 

if zs = [ ]  
otherwise 

(#) . .  [a] -+ num 
= 0 # [ ]  

#(x : zs) = l + #zs 

19 .  (--) . List-difference: (xs -- ys) is the list that results when, for each 
element y in ys , the first occurrence (if any) of y is removed from xs : 

(--)  . .  [a] -+ [a] -+ [a] 
zs - - [ ]  = xs 

zs -- (y : ys) = remove zs y -- ys 
where 

remove [ ]  y = [ ]  
remove ( x  : zs )  y = zs, if  x = y 

= x :  remove xs y otherwise 

20. ( ! ) .  List-index: (xs ! n) returns the nth element of zs: 

( ! )  . .  [a] -+ num -+ a 
(x : xs) ! O  = x 
(x : xs) ! (n + 1) = xs ! n  
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21 . (/I.). Logical conjunction: 

(/I.) . . bool -t bool -t boo1 
True /I. y = y 

False /I. y = False 

22. (V). Logical disjunction: 

(V) . . bool -t bool -t boo1 
True V y = True 
False V y = Y 

23. (..., ) . Logical negation: 

(...,) . .  boo1 -t bool 
..., True = False 
...,False = True 

24. map . Applies a function to every element of a list: 

map . .  (a -t (3) -t [a] -t [(3] 
. map ! [ ] = [ ]  

map I ( x  : xs) = I x : map I xs 

25. max . Returns the maximum value in a non-empty list: 

max . .  [a] -t a 
max = 101d11 (max) 

26. min. Returns the minimum value in a non-empty list : 

min ., [a] -t a 
min = 101d11 (min) 

27. or. Returns the logical disjunction of a list of booleans: 

or . .  [bool] -t bool 
or = loldr (V) False 

28. product . Returns the product of a list of numbers: 

product .. [num] -t num 
product = loldl ( x )  1 



29. reverse. Reverses a finite list : 

reverse .. [a] - [a] 
reverse = foldl prefix [ ]  

where prefix :cs x = x : :cs 

30. scan. Applies foldl to every initial segment of a list: 

scan .. (a - {3 - a) - a - lf3] - [a] 
scan ! a xs = a :  scan' f a xs 

where scan' f a  [ ]  = [ ]  
scan' ! a ( x  : xs) = scan f (f a x  ) xs 

31.  snd. Selects the second component of a pair: 

snd :: (a, {3) - {3 
snd (x , y) = y 

32. sort . Sorts a finite list into non-decreasing order (using quicksort) :  

sort 
sort [ ]  

. .  [a] - [a] 
= [ ]  

sort (x : xs) = sort [u I u � XSj U < x] 
*[x] 
*sort [u I u � ZSj U � x] 

33. sum. Returns the sum of a list of numbers: 

sum : :  [num] _ num 
sum = foldl ( + ) 0 

34. tl. Removes the first element of a non-empty list : 

tl : :  [a] - [a] 
tl (x : xs)  = xs 

35. take. Selects an initial segment of a list : 

take . .  num - [a] - [a] 
take 0 xs = [ ]  
take (n + 1) [ ] = [ ]  
take ( n  + 1) (x : :cs) = z :  take n zs 
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36. takewhile . Selects the longest initial segment of a list all of whose ele
ments satisfy a given predicate: 

takewhile . .  (a - bool) - [a] - [a] 
takewhile p [ ]  = [ ]  
takewhile p ( x  : xs) = x : takewhile p xs, if p x 

= [ ] , otherwise 
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37. until. Applied to a predicate, a function and a value, returns the result 
of applying the function to the value the smallest number of times in order 
to satisfy the predicate: 

until 
until p j  z 

. .  (a -+ bool) -+ (a -+ a) -+ a -+ a 
= z ,  if p z 
= until p j (f z ) ,  otherwise 

38. zip. Takes a pair of lists into a list of pairs of corresponding elements :  

zip 
zip ( [ ] ,  ys) 
zip « z : zs) , [ ] ) 
zip « z  : zs) , (y : ys)) 

. .  ( [a] , [,BD -+ [(a , ,B)] 
= [ ] 
= [ ]  
= (z ,  y) : zip (u , ys) 
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Programming in Miranda 

Although we have not used the specific syntax of a particular programming 
language in this book, the notation is - apart from typographical issues -
very close to a subset of the functional language Miranda 1 .  In this Appendix 
we give a quick and informal description of how to translate the notation 
used in the book into Miranda. Readers are advised that what follows does 
not constitute a definition of Miranda; in particular, there are many fea
tures of Miranda that we have not introduced into our notation, and certain 
conventions and restrictions that followed in the book may not be enforced 
by Miranda. For a more detailed discussion of Miranda, see David Turner's 
article: An Overview of Miranda, SIGPLAN Notices , December 1986.2 

Conditional equations. Perhaps the main difference in writing definitions 
in Miranda is that the particular keyword if is omitted before guards in 
functions defined by cases . For example the definition: 

strep zs = [0] , if ys = [ ]  
= ys , otherwise 

where ys = dropwhile (= 0) zs 

is translated into Miranda as follows: 

strep xs = [0] , ys = 0 
= ys , otherw i s e  

where ys = dropwhile (=0) x s  

Note that otherwise and where are reserved words in Miranda. 

Typography. The Miranda syntax for the mathematical and other symbols 
used in the book is described under four headings as follows. 

l Miranda is a trade-mark of Research Software Ltd. 
2Further information about the Miranda system and its availability for various comput

ers may be obtained from Research Software Ltd, 23 St Augustines Road, Canterbury CTl 
lXP, England, or from the following electronic mail address - "mira-request@ukc.ac.uk" . 
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Basic operators. 
These are translated according to the table: 

Ascii characters. 
In common with many languages, Miranda uses an "escape" convention for 
denoting certain characters inside character and string constants: this in
volves prefixing another character by a backslash \. The most common in
stance is the newline character '+', which is translated as ' \n ' . Also, the 
backslash, the single-quote, and the double-quote character are translated as 
, \\ " ' \ " , and , \  , . , respectively. 

User defined operators. 
In Miranda all user defined infix operators I!ol'e written as normal identifiers 
preceded by a $ character; Taking our picture processing operators (see 
Chapter 4) as examples, above becomes $above and below becomes $below. 
Thus, the function: 

lframe (m, n) p = (p beside empty (h , n - 10» 
above empty (m - h ,  n) 
where h = height P 

10 = width p 

would be written in Miranda as: 

Iframe (m ,n) p = (p $beside empty (h . n-w» 
$above empty (m-h ,n) 
where h = height p 

w = width P 

7}jpe variables. 
Generic type variables for which in this book we have used the greek letters 
Q, /3, ,,( , and so on, are written in Miranda * ,  ** ,  ***,  and so on. For example, 
the type of the function map is expressed in Miranda as follows: 

map : :  (*  -> **) -> [*] -> [**] 

Standard functions. The Miranda standard environment provides a 

library of useful functions, many of which have been used in this book. How
ever, there are some differences with the list given in Appendix B ,  the most 
important of which are as follows:  

(i) The function foldl is  given a different type and definition in Miranda. 
In Miranda the definition of foldl is essentially as follows:  



foldl : :  (*  -) ** -) **)  -) ** -) [*] -) ** 
foldl f a [] = a 

foldl f a (x : xs )  = foldl f (f x a) xs 
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In particular, foldl has the same type as foldr. Moreover, foldl is not 
made strict in its second argument . 

For example, in Miranda we can write: 

revers e = foldl ( : )  [] 

In the notation used in this book, we have 

reverse = foldl snoc [ ]  
where snoc xs x = x : xs 

(ii) The function zip is provided in Miranda, but as a curried function 
zip2, with the definition: 

zip2 : :  [*] -) [**] -) [* , **] 
z ip2 ( a : as )  (b : bs )  = ( a , b ) : zip2 as bs 

z ip2 as bs = [] 

Miranda also defines zip3, zip4, and so on (up to 6) for zipping triples and 
other tuples. 

(iii) The following functions are not (currently) provided in the Miranda 
standard environment : 

foldl1 foldr1 scan 1st snd 

(iv) The infix operators max and min are not provided in Miranda. 
Instead one uses the listwise functions max and min. So, where in this book 
we write ( a  max b) ,  the Miranda programmer would write max [a , b] . 
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